

Wyznaczenie energii dysocjacji molekuły jodu I_2

Autor: Marcin Kujda Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ

Streszczenie

W eksperymencie wyznaczyłem energię dysocjacji molekuły jodu I_2 , $D''_0 = 1.526(25)$ eV, 1.557(37) eV, 1.523(27) eV, 1.525(27) eV dla temperatur, odpowiednio $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$. W tym celu zmierzyłem widma absorpcyjne molekuły jodu oraz skorzystałem z ekstrapolacji Birge-Sponer. Widma analizowałem w zakresie widzialnym. Otrzymane wyniki są zgodne, w granicach błędów pomiarowych z wartością tablicową $D''_0(th) = 1.5424$ eV [3].

Wprowadzenie		Wynik	ki	
3- 	Rysunek1:Strukturaoscylacyjnychstanówenergetycznydla	Kalibracja urządzenia spektralnego		
E_{A^*}	różnych stanów elek- tronowych molekuły		Cd 479.991 nm Cd Cd Hg 467.814 hm 508 582 nm	560 Krzywa dyspersji

dwuatomowej AB, gdzie D_0'' - energia dysocjacji, D_e'' - głębokość studni potencjału, E_k - energia wybranego poziomu oscylacyjnego [1].

Energia dysocjacji jest to najmniejsza energia potrzebna do rozdzielenia składników molekuły, która znajduje się w stanie podstawowym. Dostarczenie do układu energii większej lub równej energii dysocjacji nie zawsze prowadzi do fragmentacji. Elektronowe stany wzbudzone i związane nimi systemy poziomów oscylacyjnych i rotacyjnych najczęściej leżą powyżej granicy dysocjacji poziomu podstawowego. Molekuła w takich stanach może być w dalszym ciągu układem związanym, mimo że jej energia wewnętrzna jest większa od D_0'' . Istnieje wiele sposobów dysocjacji. Dla procesu dysocjacji ze wzbudzonego stanu elektronowego bilans energetyczny dla molekuły jodu można zapisać jako $I_2 + E_I^* + D_0'' = I^* + I$, gdzie $E_I^* = 0.9423$ eV - ener-

W celu wyznaczenia energii dysocjacji molekuły jodu niezbędnym etapem była kalibracja monochromatora. Dopasowałem krzywą dyspersji otrzymując $\lambda(x) = 0.004110(39)x + 395.17(85)$.

Ekstrapolacja Birge-Sponer

gia wzbudzonego atomu jodu [1]. *Ekstrapolacja Birge-Sponer* polega na graficznym wyznaczeniu energii dysocjacji danego stanu elektronowego, jest sumą wszystkich odstępów energetycznych $\Delta E(v+1/2) = \hbar \omega_e - \hbar \omega_e x_e 2(v+1)$ począwszy od poziomu zerowego, aż do granicy dysocjacji. W celu wyznaczenie energii dysocjacji wybieram arbitralnie linię dla absorpcji do stanu v'=k, wyznaczając energię odpowiadającą temu przejściu E_k . Następnie korzystam z zależności $D''_0 = E_k +$ $\Delta W - E_I^*$, gdzie ΔW jest polem pod wykresem zależności $\Delta E(v+1/2)$.

Układ doświadczalny

podstawie pomiaru widma absorpcji w obszarze widzialnym. Pomiary wykonałem za pomocą monochromatora SPM-2, ustawiając układ zgodnie z rysunkiem [1]. W celu skalibrowania monochromatora zarejestrowałem widmo wzorcowej lampy spektralnej Hg-Cd.

(c) Widmo absorpcyjne dla komórki z jodem dla wszystkich temperatur.

(d) Widmo absorpcyjne dla komórki z

jodem, zakres dla progresji ze stanu

v"=1,2.

(e) Widmo absorpcyjne dla komórki z jodem w temperaturze 30°, wraz z zaznaczonym zakresem branych pod uwagę progresji.

-0.0002593 ± 3.255e-0

(f) Wykres Birge - Sponer dla komórki z jodem w temperaturze $40^{\circ}C$.

(g) Wykres Birge - Sponer dla komórki z jodem w temperaturze $50^{\circ}C$.

(h) Wykres Birge - Sponer dla komórki z jodem w temperaturze $60^{\circ}C$.

Tablica 1: Zestawienie wyników dla komory z jodem w temperaturze 30, 40, 50, 60[°C]. Temperatura [°C] Pole pod wykresem B-S, ΔW [eV] Energia odniesienia E_k [eV] Energia dysocjacji D_0 [eV] 0.187(24)2.281(10) 1.526(25) 1.557(37) 2.250(10) 40 0.249(36)1.523(27) 50 0.215(27)2.250(10)1.525(27) 60 0.206(26) 2.261(10)

Tablica 1: Zestawienie wyników dla komory z jodem w

trząc na prawą część rysunku (d), dla temperatury $30^{\circ}C$ natężenie związane z przejściami elektronowooscylacyjnymi praktycznie zanika, natomiast dla temperatury $60^{\circ}C$ natężenie to jest jeszcze dość wyraźnie widoczne. Zakres prawej części wykresu odpowiada przejściom z poziomu v'' = 2. Na niepew-

ność wyznaczenia energii dysocjacji D_0'' składa się

ΔW

0.005

Rysunek 2: Układ do-
świadczalny [1].kiem [1]. W
librowania
matora zaW doświadczeniu wy-
znaczyłem energię dy-
socjacji jonu jodu nakiem [1]. W
librowania
matora za

temperaturze 30, 40, 50, 60°C.

Wykres (d) potwierdza, że zgodnie ze wzorem Boltzmana dla wyższych temperatur otrzymujemy zwiększoną populację poziomów oscylacyjnych v'' = 1,2 względem poziomu v'' = 0. Pa-

Podsumowanie

niepewność systematyczna związaną z dokładnością odczytu wartości energii przejścia E_k dla poszczególnych progresji, jak również niepewność statystyczna z dopasowania Birge- Sponer.

Literatura

- [1] II Pracownia Fizyczna, *Instrukcja do ćwiczenia Z19 Doda*tek 1,2
- [2] J.M. Hollas, *Modern Spectroscopy*, John Wiley, Sons 2004, rozdz. 7.2.5.
- [3] Nist, Energia dysocjacji, http://webbook.nist.gov/ cgi/inchi?ID=C7553562&Mask=1000

Uzyskane wartości energii dysocjacji molekuły jodu $D_0'' = 1.526(25)$ eV, 1.557(37) eV, 1.523(27) eV, 1.525(27) eV dla temperatur, odpowiednio $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$ są w granicach niepewności zgodne z wartością tablicową $D_0''(th) = 1.5424 eV$. Zgodnie z przewidywaniami teoretycznymi natężenia na wykresach widm absorpcyjnych (c) zwiększają się, by następnie maleć. Związane jest to z prawdopodobieństwami przejść pomiędzy różnymi poziomami oscylacyjnymi i zależy od wielkości czynnika Francka-Condona.