
Contents lists available at ScienceDirect
Journal of Quantitative Spectroscopy &
Radiative Transfer

Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 59–80
http://d
0022-40

n Corr
E-m
journal homepage: www.elsevier.com/locate/jqsrt
Optical tweezers: Theory and modelling

Timo A. Nieminen n, Nathaniel du Preez-Wilkinson, Alexander B. Stilgoe,
Vincent L.Y. Loke, Ann A.M. Bui, Halina Rubinsztein-Dunlop
The University of Queensland, Quantum Science Laboratory, School of Mathematics and Physics, Brisbane, QLD 4072, Australia
a r t i c l e i n f o

Article history:
Received 20 November 2013
Received in revised form
4 April 2014
Accepted 7 April 2014
Available online 13 April 2014

Keywords:
Optical tweezers
Laser trapping
Optical force
Optical torque
Light scattering
x.doi.org/10.1016/j.jqsrt.2014.04.003
73/& 2014 Elsevier Ltd. All rights reserved.

esponding author. Tel.: +61 7 3365 2422; fa
ail address: timo@physics.uq.edu.au (T.A. Nie
a b s t r a c t

Since their development in the 1980s, optical tweezers have become a widely used and
versatile tool in many fields. Outstanding applications include the quantitative measure-
ment of forces in cell biology and biophysics. Computational modelling of optical tweezers
is a valuable tool in support of experimental work, especially quantitative applications.
We discuss the theory, and the theoretical and computational modelling of optical
tweezers.
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1. Introduction

Before the 1970s, there seemed to be little, if any,
prospect of terrestrial application of optical forces. That
optical forces could be important in astronomical situations
was known [79,143], because free from frictional forces,
small accelerations could result in large changes in velocity
over time, or in stellar atmospheres where irradiances could
be extremely high. Indeed, detailed proposals for solar sail
driven spacecraft had been made as early as 1924 [160].
However, the minuteness of optical forces appeared to
condemn them to remain a subject for “heroic experi-
ments” (such as the first experimental measurements by
[95,123,124]). However, from the early 1970s onwards,
optical forces proved capable of manipulating small objects,
and two branches of technology developed: atom cooling
and trapping, which led to Nobel Prize in Physics in 1997
[27,28,139] and 2001 [31,89], and optical tweezers, or the
single-beam gradient trap, where a single tightly focussed
x: +61 7 3365 1242.
minen).
laser beam is used to three-dimensionally trap microscopic
particles. Optical tweezers were immediately attractive in
biological research, due to the ability to trap and move
microorganisms without physical contact [13,176], which
can even allow manipulation of organelles in live cells [76].
Further, the ability to measure small forces—from femto-
newtons to some tens of piconewtons—has made optical
tweezers a star player in quantitative biophysics and
mechanobiology [120]. The original modern papers on
optical forces [6] and optical tweezers [9] and historical
perspectives by the pioneer of the field [7,8] provide a basis
for a historical overview of the topic. In addition, there is
a useful bibliography covering the first few decades of
optical tweezers [92]. Since we are discussing the theory
and modelling of optical tweezers, we can point out some
interesting and useful early theoretical work. Roosen and
Imbert [146], Roosen et al. [145], and Roosen [144] carried
out early work (following Ashkin's original experiments,
but predating optical tweezers). Application of full-wave
theories to modelling optical trapping closely followed
the invention of optical tweezers; some key theoretical
papers from the first decade of optical tweezers are
by Barton et al. [11,12], Gussgard et al. [72], Visscher
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Fig. 1. A typical optical tweezers setup. A dichroic mirror in the micro-
scope reflects incoming laser light towards the sample; and allows
illumination light from the condenser to pass through to the eyepiece
or camera. An oil layer is used between the lens and the cover slip, in
order to allow for the use of numerical apertures greater than one.
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and Brakenhoff [165,166], Wright et al. [173], and Ren et al.
[142]. An interesting combination of theory and experiment
is the early work using optical levitation to test scattering
theory by Grehan and Gouesbet [68], Guilloteau et al. [70].

The chief difficulty in practical application of optical
forces is that the ratio of momentum flux to energy flux is
very small. These are related by the speed of light, such
that the momentum flux p of a collimated beam, or ray of
light, or plane wave, of power P is p¼ nP=c, where n is the
refractive index, and c is the speed of light in free space.
This means that the maximum force obtainable in air is
less than 10 nN/W. Indeed, the lack of successful labora-
tory measurements until the beginning of the twentieth
century made many skeptical of even the existence of such
forces [44], despite earlier theoretical work suggesting
their existence [41,14]. Early experimental efforts failed—
John Michell demonstrated only the destruction of
his experimental apparatus by concentrated sunlight [75]
(this work was, however, very fruitful as it led to the
development of the torsion balance), and the Crookes
radiometer [33–35] demonstrated thermal, rather than
optical, forces. Part of the difficulty was the lack of a
complete theory of optics, until Maxwell's development of
electromagnetic theory [110,111], with further clarification
of the transport of momentum by electromagnetic fields
and light following shortly [140,10,77]. Interestingly, the
same result was obtained on thermodynamic grounds by
Umov [161].

Even after the theoretical basis was known, and the
first measurements had been made, practical applications
appeared to be far-off, perhaps even infinitely far. Terres-
trial application requires other forces such as gravity,
friction, viscous drag, and Brownian motion to be over-
come. For a 1 W beam to be able to lift a solid particle, it
would need to be smaller than 100 μm in radius, for typical
densities. This, in turn, requires the 1 W beam to be
focussed to approximately the size of the particle, or
smaller. In the absence of a coherent light source, the
irradiance at the focal spot is limited by the brightness
theorem—the irradiance at the focus cannot exceed the
irradiance at the source, which follows from Liouville [97].
To achieve the required irradiance above, i.e., 1 W focussed
into an area of 10�8 m2, would require a blackbody with a
temperature of over 6000 K.

However, the development of the laser allowed these
limits to the irradiance achievable by focussing light from
extended sources to be overcome. Ashkin [7,8] realised
that the laser enabled greater irradiances to be achieved,
which should be sufficient to levitate small particles
against gravity [6]. These traps were based on radiation
pressure forces, where the beam pushes the particle in the
direction of propagation. During these experiments, it was
noticed that particles were trapped transversely within the
beams—they were attracted to the regions of maximum
electric field amplitude. These forces were manifestations
of the gradient force, and Ashkin realised that it would be
possible to produce a gradient force large enough to
overcome the radiation pressure force (or scattering force),
allowing three-dimensional trapping by a single laser
beam [9]. The critical ingredient was tightly focussing
the beam so that the field gradient is sufficiently large
in all directions from the focus. This requires a high-
numerical aperture lens; a microscope objective is ideal,
and a typical optical tweezers apparatus essentially con-
sists of a laser beam focussed by a microscope, as shown in
Fig. 1. The microscope objective conveniently allows the
user to observe the trapped particle.

Once one accepts that light carries momentum, the
existence of radiation pressure forces which push particles
in the direction of propagation due to reflection or absorp-
tion follows naturally. The gradient force, which can act
against the propagation of the beam, is more mysterious
when first encountered. There are two simple qualitative
explanations. The first is that the electric field of the beam
induces a dipole moment in the trapped particle, which is
then attracted to the region of highest field, in the same
way as a steel ball bearing is attracted to a magnet. The
second explanation is based on the momentum of a
converging or diverging beam. The momentum of a con-
verging or diverging beam is less than that of a collimated
beam, since, for any part of the beam, only the component
of the momentum parallel to the beam axis contributes to
the total momentum. The more converging or diverging
the beam, the lower the momentum, while the more
collimated, the higher the momentum. Thus, if a trapped
particle makes the beam more convergent or divergent, it
reduces the momentum of the beam, and is pushed in the
direction of propagation. If, on the other hand, it makes the
beam more collimated, the force opposes the direction of
propagation. A typical particle can be considered as a weak
positive lens, and if the beam is converging (i.e., if the



Fig. 2. Gradient force due to change of momentum of the beam. A trapped particle acts as a weak positive lens, and if before the focus (left), increases the
convergence of the light, reducing its momentum. Due to the conservation of momentum, the rate of change of momentum of the two rays shown, plus
the rate of change of momentum of the particle—the optical force acting on the particle—must equal zero. The resulting force pushes the particle towards
the focus. If the particle is after the focus (right), the particle decreases the divergence of the beam, increasing its momentum. The resulting force pulls the
particle towards the focus.
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particle is before the focus), it will increase the conver-
gence and be pushed towards the focus. If the beam is
diverging (i.e., if the particle is past the focus), it will make
the beam less divergent and be pulled towards the focus.
This is illustrated in Fig. 2.

Both the gradient force and the scattering force, as the
radiation pressure force is usually called in optical twee-
zers, result from the trapped particle changing the direc-
tion of the trapping beam—both result from scattering.
This points towards a general method for calculating
optical forces and the computational modelling of optical
tweezers: optical tweezers as a scattering problem. Calcu-
late the scattered field, and thus the total field, and
therefrom determine the optical force.

In many ways, the scattering problem at the heart of
optical tweezers is simple. Much of the complexity of the
apparatus in Fig. 1 can be ignored—the viewing system and
the collection and detection of the transmitted light do not
affect the interaction between the trapping beam and
particle, and the rest serves to deliver the trapping beam,
suitably expanded to fill the back aperture of the objective.
From the viewpoint of computational light scattering,
optical tweezers consist of a particle interacting with a
focussed beam. The particle is usually a single particle, and
often sufficiently far from surfaces (such as the interface
between the coverslip and the medium surrounding the
particle) so that it can be treated as isolated. The speed of
the particle, even if it is moving within the trap, is low
enough so that the system can be treated as quasi-static.
Since particle speeds will be very small compared to the
speed of light, and the refractive index of the particle only
changes slowly with frequency, Doppler shifts can be
neglected. (This is unlike the case of atom trapping, where
rapid change in the refractive index near resonance
makes Doppler shifts an essential part of atom trapping
and cooling. However, it can still be possible to study or
measure Doppler shifts in order to obtain information
about the motion of the particle.) Thus, we are left with
the problem of elastic scattering of monochromatic coher-
ent light. In addition, the particle of interest is often a
homogeneous isotropic sphere.

On the other hand, the particles trapped in optical
tweezers are typically both too large for small particle
approximations such as Rayleigh scattering to be accurate,
and too small for geometric optics to be accurate, requiring
the use of full-wave solutions. In addition, and perhaps a
greater difficulty is that the incident light is a focussed
beam, rather than the plane wave illumination common in
scattering problems.

The theory and computational modelling of optical
tweezers can be valuable tools. They can guide the devel-
opment of new types of optical tweezers apparatus, and
greatly aid the optimisation of existing methods (e.g., the
optimisation of optically driven microrotors by [102]).
When investigating new effects, modelling can indicate
whether the major contributions to the observed effects
have been identified (e.g., contributions of shape and
material birefringence to the orientation of protein crystals
in optical tweezers by [150]). Computational modelling
can provide a versatile environment for performing simu-
lated experiments free of experimental noise and provid-
ing access to quantities that cannot be measured easily,
if at all. This can allow potential experimental discoveries
to be predicted (e.g., the spinning of glass cylinders in
circularly polarised light was predicted to be measurable,
leading to experimental observation by [15], and the
prediction of multiple equilibria from the interaction of
multiple traps by [153]). New quantitative techniques can
be developed where computational modelling plays a
major role (e.g., the measurement of the refractive index
of single microparticles by [91]).
2. General theory of optical tweezers

The main task when modelling optical tweezers is to
calculate the force (and torque) exerted on the particle in
the trap by the electromagnetic field as a function of its
position (and orientation) within the trap. Often, the
particle being considered is spherical and the torque is
zero, and the orientation is irrelevant, reducing the pro-
blem to one of the optical forces as a function of position.
The most important properties of the optical trap can be
described by five quantities:
�
 The trap strength, which is the smallest maximum
restoring force keeping the particle within the trap.
This force is different in different directions from the
equilibrium trapping position, and the particle is most
likely to escape in the direction in which the maximum
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force is weakest; therefore, we call this weakest max-
imum force the trap strength. This weakest force
usually occurs along the beam axis in the direction of
propagation (“downstream” along the beam), where
the scattering force acts to push the particle out of
the trap.
�
 The radial trap strength, which is the maximum restor-
ing force acting to keep the particle within the trap
against radial displacement from the equilibrium. Typi-
cally, this would be calculated for a purely radial
displacement. However, the axial force is not usually
zero during such a radial displacement, and the particle
would not follow such a purely radial trajectory as it
would be pushed up or down by the axial force [155].
Nonetheless, this straight-line radial trap strength pro-
vides a convenient estimate of the radial force required
to remove a particle from the trap.
�
 The equilibrium position, which is the position where
the optical force is zero, and the equilibrium is stable.
Note that such an equilibrium position does not always
exist, even if the particle can be trapped—for example,
in Laguerre–Gauss beams, a small particle can be
trapped in the ring-shaped beam, where it will orbit
about the beam axis [45,129].
�
 The radial spring constant, which is the rate of increase
of the restoring force with a change in the radial
position. Usually, this will be determined from the
equilibrium position as the starting point. In the vici-
nity of the equilibrium point, the trap can (usually) be
approximately modelled as a linear spring, and the
force given by

Fr ¼ �krr: ð1Þ
The radial spring constant depends on the direction
if the beam is not rotationally symmetric; the radial
force can be different in the plane of polarisation and
normal to the plane of polarisation, even for a Gaussian
beam. Therefore, properly speaking, we should specify
. 3. Relationship between force–displacement curves and quantities describing
ial force versus radial displacement. The quantities of interest are the trap strengt
hich the axial force is zero), the radial spring constant (the slope of the curve)
the spring constant as a function of direction. For a
Gaussian beam, it is sufficient to consider spring con-
stants in the plane of polarisation, and normal to this
plane. (This also applies to the radial trap strength.)
�
 The axial spring constant, which is the rate of increase of
the restoring force with a change in the axial position.
This is not as important as the radial spring constant,
since it is less used for experimental measurements
of force.
It is often useful to present these quantities as the dimen-
sionless force and torque efficiencies, Q and τ, which can
be converted to the force and torque by multiplying with
nP/c, where n is the refractive index of the medium in
which the particle is immersed, P is the beam power, and c
is the speed of light in free space, to obtain the force, and
P=ω, where ω is the optical frequency, to obtain the torque.
The force efficiency can be considered as the force in units
of nℏk per photon, and the torque efficiency the torque in
units of ℏ per photon. The relationship between these
quantities and typical force–displacement curves is shown
in Fig. 3.

These quantities are sufficient for many purposes for
spherical particles. The (axial) trap strength, equilibrium
position, and axial spring constant can typically be found
with reasonable accuracy by calculating the axial force–
displacement curve at 20–50 positions. The radial spring
constant can then be found by one additional, off-axis,
calculation (or two, if we are finding radial spring con-
stants in two directions). The maximum radial force can be
found by another 20–50 off-axis calculations. Therefore,
there is clearly a need for repeated calculations for the
same particle—the calculation of the optical force and
torque at one point is rarely sufficient. For other purposes,
it may be necessary to calculate the force field as a
function of position in two or three dimensions. For a
circularly polarised rotationally symmetric beam, the force
an optical trap. (Left) Axial force versus axial displacement. (Right)
h, the radial trap strength, the equilibrium position (the displacement
, and the axial spring constant (again, the slope of the curve).
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field should also be rotationally symmetric, and it is
sufficient to calculate the forces in a half plane out from
the beam axis. In this case, a grid of approximately 30�30
points can be sufficient; based on practical experience, a
grid much smaller than this either fails to sample the force
field finely enough or to a large enough distance. Thus,
about 1000 calculations of optical force are required. If we
cannot assume an axisymmetric force field, and we wish
to keep the same spatial resolution, then approximately
3� 104 calculations are required. If repeated calculations
can be performed quickly (e.g., faster than 1 s per position,
or preferably faster than 0.1 s per position), calculation of
the force field is feasible.

If non-spherical particles are considered, the number of
degrees of freedom increases, by 2 for an axisymmetric
particle, or 3 for a more general particle. Since this would
increase the number of grid points by another factor of
1000 or 3� 104, if we were to maintain the same grid
resolution, direct calculation of the force as a function of
position and orientation over all combinations of position
and orientation becomes impractical. The situation is even
worse if we consider the trapping of multiple particles,
where we will have 3 degrees of freedom per particle
(or 5 or 6 if non-spherical).

One approach to such many-degree-of-freedom cases is
to simulate the dynamics of the particle in the trap [22].
This requires calculation of non-optical forces as well. In
particular, to calculate the motion of the particle requires
modelling the interaction between the fluid and the
particle. Typically, the Reynolds numbers for the fluid flow
in such motion are very low (e.g., 10�3–10�6), and the
flow can be assumed to be perfectly laminar (Stokes flow
or creeping flow). For spherical particles, one can simply
assume that the drag is given by Stokes' law, with drag
force Fdrag ¼ �6πηav for a particle of radius a moving at
velocity v through a medium of viscosity η. For simple
shapes such as spheroids [30] and cylinders [46,3,43],
suitable expressions for the translational and rotational
drag coefficients are available. For complex shapes, such as
some optically driven micromachines, direct numerical
solution of the Laplace equation allows the flow field,
and therefore the drag, to be found [4,5]. Including the
viscous drag due to motion through the fluid is sufficient
to determine the equilibrium position and orientation of a
particle in a trap, by allowing it to “fall into” the trap [22].
The equilibrium can be found accurately even if the time
step used as the particle approaches the equilibrium is
quite large (resulting in large spatial steps), as long as
small time steps are used in the vicinity of the equilibrium.
Of course, the path the particle follows to the equilibrium
will not necessarily be accurate, but this will not affect the
determination of the equilibrium. Once the equilibrium
position and orientation are found, translational and rota-
tional spring constants can be found.

For a more realistic simulation of a particle in a trap,
especially for small particles, it is necessary to include
Brownian motion [21]. This can also be useful for finding
equilibria as described above, preventing the particle
becoming stuck in an unstable equilibrium.

A more difficult problem is modelling convective
flow [109]. At the commonly used trapping wavelength
of 1064 nm, one can expect a temperature rise in the focal
region of about 1 K per 100 mW of power [136]. The
thermal expansion of the fluid will result in convective
flow. This is a difficult problem because it involves flow in
an open region, extending over a distance that is large
compared to the size of the trapped particle, and usually
with nearby surfaces affecting the flow (such as the
microscope slide and cover slip). However, as far as free
convection problems are concerned, it is a relatively
simple problem—a convenient and accurate approxima-
tion is to assume that the temperature distribution is
independent of the fluid flow. This results from the very
short distances over which heat must travel, and conse-
quent short times required, to reach very close to the
equilibrium temperature distribution compared to the
time required for the fluid to flow a significant distance
[147]. Thus, one could determine the absorbed power
density from the trapping beam, and then find the tem-
perature distribution. From the temperature distribution,
one then finds the variation in density (and viscosity,
if needed or desired) of the fluid, and then the con-
vective flow.

From this, we can see that calculating optical forces and
torques is the main task when computationally modelling
optical tweezers, but not the only task, and often not the most
difficult task. Non-optical forces and torques due to viscous
drag and Brownianmotion need to be included for a complete
model, with a major complication from the viscous drag due
to convective flow past the particle. However, for many
purposes, it is sufficient to calculate the optical force and
torque only, or when orientation does not matter (such as for
spherical particles), the optical force only.

Sometimes, we will want to calculate other quantities,
even if these are not necessary for the calculation of
optical forces or the dynamics of trapped particles. For
example, we might wish to know the electric field, or the
irradiance, or similar quantities. These can be of use to
model observations of fluorescence, measurement of the
transmitted beam [158], simply to investigate what is
happening within the trap, or for visualisation.

There are two approaches we can take to calculate
optical forces and torques. We can either calculate the
force per unit volume acting on the particle within the trap
or use conservation of momentum and the momentum
flux towards the particle to determine the force. The
former method is fundamentally a volume-based method,
while the latter is a surface-based method. Both methods
require knowledge of the electromagnetic field. We might
expect a surface method to be more computationally
efficient than a volume method, and this is often the
case. However, in some circumstances, the volume-based
method can be superior. Apart from possible computa-
tional advantages, the volume-based method can yield
more information than the surface-based method: the
internal stresses within the trapped object. If the trapped
object is deformable, this might be essential information.
Interestingly, both the volume and surface methods yield
useful simple models for understanding the operation of
optical tweezers in the small and large particle limits.
We will discuss both methods below, and then consider
efficient computational modelling of optical tweezers.
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It is useful to introduce some common notation and
terminology that will be used in the following sections. We
will at different times consider both instantaneous electric
and magnetic fields E, D, H, and B, which are real valued,
and electric and magnetic field amplitudes E0, D0, H0, and
B0, which are the complex-valued amplitudes of time-
harmonic waves. The instantaneous fields and complex
amplitudes for the E-field are related by

E¼ RefE0 expð� iωtÞg; ð2Þ

with similar relationships for the other field quantities,
and for other time-harmonic quantities, where ω is the
angular frequency of the time-harmonic quantities.

We will characterise the electromagnetic properties of
material media by the permittivity ϵ and permeability μ.
Since we will consider non-magnetic dielectric materials,
μ¼ μ0, the permeability of free space. We can also describe
the medium in terms of the refractive index n¼
ðϵμ=ðϵ0μ0ÞÞð1=2Þ ¼ ðϵ=ϵ0Þð1=2Þ, where ϵ0 is the permittivity of
free space, or the impedance Z ¼ ðμ=ϵÞð1=2Þ. Note that
D¼ ϵE¼ ϵ0EþP, where P is the induced dielectric polar-
isation, or electric dipole moment per unit volume.

We will also separate the total field into incident and
scattered parts where

EðtotalÞ ¼ EðincÞ þEðscatteredÞ: ð3Þ

Here, the incident field EðincÞ is the field that would exist in
the absence of the scattering particle, and the scattered
field EðscatteredÞ is the change in the field produced by the
presence of the particle.
2.1. Force per unit volume, and the Rayleigh scattering
approximation

Commonly, it is said that the force per unit volume
exerted by electromagnetic fields on matter is given by the
Lorentz force law:

f ¼ ρEþ J� B; ð4Þ

where the force density f is given by the forces acting on
the charge density ρ and the current density J. However,
a microscopic picture of uncharged dielectric matter
suggests that this cannot be the correct force density. If
we consider the simple case of a uniform sphere of such
matter in an almost uniform electric field, the induced
dipole moment per unit volume is almost constant—each
molecule in the matter is polarised almost identically.
Therefore, we expect an almost uniform force density.
However, if we use the Lorentz force, and we replace the
dielectric polarisation P by the equivalent charge density
ρ¼ �∇ � P, we find that the force mostly acts on the
boundaries of the polarised body. Since the force on a
dipole in an electric field depends on the orientation of the
dipole and the spatial derivative of the field parallel to the
dipole in the direction of the dipole, the force density due
to the electric field can be taken to be

felectric ¼ ðP �∇ÞE: ð5Þ
If we also include the magnetic force acting on the
polarisation current,

fmagnetic ¼
dP
dt

� B; ð6Þ

we can use the identity ðE � ∇ÞE¼∇ðE � EÞ=2�E� ðE� EÞ,
the relationship between P and E, and the Maxwell
equations [48] to write the total force density as

f ¼ ϵ�ϵ0ð Þ 1
2
∇ E � Eð Þþ d

dt
E� Bð Þ

� �
: ð7Þ

Since this force also acts on the surrounding medium, it is
the excess force on the dielectric body that affects its
motion, so the effective force density is

f ¼ ϵparticle�ϵmedium
� � 1

2
∇ E � Eð Þþ d

dt
E� Bð Þ

� �
: ð8Þ

While, in principle, we obtain the same total force on a
dielectric body using either the Lorentz force or Eq. (8), the
choice of force density can affect the accuracy of computa-
tional results. In particular, the equivalent surface charge
on a dielectric particle in the trap may prove problematic.
Other expressions for the force density are available
[26,135], and it is worth exploring the diversity if planning
a computational implementation of volume methods of
calculating optical forces.

Other than the choice of force density, the computa-
tional implementation appears straightforward, except for
the presence of derivatives in all of the different versions
of the force density. A fine enough spatial grid for precise
results can be computationally impractical in many cases,
and lower precision may need to be accepted.

There is one case where this volume approach results
in theoretically useful results and accurate numerical
calculations: Rayleigh particles [74,24]. That is, particles
that are much smaller than the wavelength. It is usual to
consider a spherical particle, but the results are also
applicable to non-spherical particles. We will consider a
sphere, and afterward discuss the application to non-
spherical particles.

For a sphere much smaller than the wavelength, the
field is almost uniform through the volume of the sphere,
and the force density is almost uniform. Thus, the volume
integral of the force density is simple:

F¼ fV ; ð9Þ
where V ¼ ð4=3Þπa3 is the volume of the sphere, and a is its
radius. Therefore, we can express the total force in terms of
a polarisability α:

F¼ α
1
2
∇ E � Eð Þþ d

dt
E� Bð Þ

� �
: ð10Þ

The static polarisability of a sphere,

αstatic ¼ 4πϵmediuma
3 ϵparticle=ϵmedium�1

2ϵparticle=ϵmediumþ1

� �
; ð11Þ

is a good starting approximation for the polarisability α.
If we assume that the incident field is time-harmonic, the
time-averaged force is

〈F〉¼ 1
2
Re α

1
2
∇ E0 � En

0

� ��2iωE0 � Bn

0

� �� �
: ð12Þ



Fig. 4. The surface integral of the Maxwell stress tensor,
R
ST � dA, over a

surface around a spherical particle as a 100 fs pulse passes through the
particle.
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The first term, proportional to the gradient of the irradi-
ance, is the gradient force, and the second term, propor-
tional to the Poynting vector, is the scattering force.
A serious deficiency in the static polarisability for the
time-harmonic polarisability is now apparent: the scatter-
ing force is zero if the polarisability is real, as the static
polarisability is for a non-absorbing particle. Since a time-
harmonic dipole with amplitude p0 radiates with average
power c2Zk4p0 � pn

0=ð12πÞ, and the time-averaged rate of
doing work on the dipole, ð1=2ÞReð� iωp0 � En

0Þ ¼
�ð1=2ÞImðαÞE0 � En

0Þ, is the source of this power, the ima-
ginary component of the polarisability must be

Im αð Þ ¼ �cZk3

6π
jαj2: ð13Þ

This gives the required non-zero scattering force.
Noting that the real part of the polarisability is propor-

tional to a3, or the volume of the particle, and, for a non-
absorbing particle, the imaginary part is proportional to a6,
or the volume squared, we can always obtain a scattering
force smaller than the gradient force if we make the
particle sufficiently small. Thus, materials that cannot be
trapped for wavelength-sized particles can be trapped for
very small particles; notable examples include gold nano-
particles [73]. Since Brownian motion will still act to
remove the particle from the trap, it will provide a lower
limit to the size of particle that can be trapped, unless
Brownian motion is reduced, such as in optically trapped
cold atoms. Since the gradient force dominates the trans-
verse force in the vicinity of the equilibrium position, the
radial spring constant will be proportional to a3.

Alas, the highly non-paraxial beams usually used for
optical trapping do not have simple analytical expressions
for the fields (unlike paraxial beams), and it is not possible
to proceed further to analytical formulae for the gradient
and scattering forces as functions of position within
the beam.

2.2. Conservation of momentum, and the ray optics
approximation

An alternative approach to finding the optical force
exerted on a particle is to make use of conservation of
momentum. The momentum flux through a surface can be
found by integration of the Maxwell stress tensor T, and
the total force on bodies enclosed by the surface is

F¼
Z
S
T � dA�ϵμ

d
dt

Z
V
S dV : ð14Þ

The last term is required because the momentum that
passes through the surface can be stored in the electro-
magnetic field within the enclosed volume, instead of
being transferred to the enclosed bodies.

It is highly desirable to be able to ignore this last term,
because if we must determine the fields throughout the
enclosed volume in order to calculate it, we lose most of
the computational advantages we might have gained from
using a surface method. (Our only remaining advantage
might be not necessary to calculate the spatial derivatives
in Eq. (12).) Therefore, we ask: When can we ignore this
volume term?
It is illuminating to calculate the momentum flux
through a surface around a spherical particle due to the
passage of a pulse of radiation. Such a calculation is shown
in Fig. 4. The integrated momentum flux through the
surface is dominated by the electromagnetic momentum
temporarily residing in the enclosed volume; as the
momentum enters, the integrated flux is positive, and
as the momentum leaves, the flux is negative. This is a
serious problem if we wish to know the instantaneous
force acting on the particle—this would require the un-
wanted volume integral to determine the enclosed elec-
tromagnetic momentum. Worse, the force would be given
by the difference between the flux and the rate of change
of the enclosed momentum, and the errors in the flux and
rate of change are likely to result in large relative errors in
the force. It seems that, if we require the instantaneous
force, integration of the force density over the volume of
the particle is a better choice.

However, the instantaneous force is usually of little
interest. Firstly, the typical trapping beam in optical
tweezers is time-harmonic, and we are content with
knowing the time-averaged force, since the variation of
force over an optical cycle is too rapid to be measured—it is
the time-averaged force that is responsible for observable
effects. However, if we are using a time-domain method
such as the finite-difference time-domain method (FDTD)
to calculate the fields (often using a pulse for the purposes
of the calculation), we can be faced by the problem of
obtaining the time-averaged force from what we can
directly calculate: the instantaneous force. Secondly, even
if we are interested in a pulsed beam in its own right, such
as shown in Fig. 4, it is the impulse imparted to the particle
by the pulse that is of interest, because, again, variation
over the duration of the pulse will not be observed (unless
the pulse is quite long, in which case it is possible to treat
the pulse as a quasi-steady-state continuous wave: we can
calculate the force due to a time-harmonic wave at the
carrier frequency of the pulse, and simply modulate this by
the pulse envelope). That is, it is the integral over time of
the curve in Fig. 4 that we wish to calculate. (For a periodic



Table 1
Convergence of surface integral of the Maxwell stress tensor as point
spacing is reduced. Curves of force as a function of position are shown in
Fig. 5. The grid is a uniform angle polar and azimuthal grid; the grid
spacing is the spacing in the polar direction, and the azimuthal spacing
along the “equator”.

Step size h Error

0:2λ 0.17
0:1λ 3.9�10�2

0:05λ 9.6�10�3

0:02λ 1.5�10�3

0:01λ 3.8�10�4
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series of pulses, this is equivalent to calculating the time-
averaged force.)

If we integrate Eq. (14) over time, from time t1 to time
t2, the impulse Δp delivered to the particle is

Δp¼
Z t2

t1

Z
S
T � dA dtþϵμ

Z
V
Sðt1Þ dV�ϵμ

Z
V
Sðt2Þ dV : ð15Þ

If we choose t1 and t2 so that the fields are identical at the
two times, then the last two terms cancel, and it is not
necessary to calculate any volume integrals. This condition
is satisfied if we choose t1 and t2 to be one optical cycle
apart for a continuous wave trapping beam, one pulse
repetition period apart for a periodic series of pulses, or
sufficiently before and after the pulse so that the fields are
sufficiently close to zero for a single pulse. For a contin-
uous wave, it will usually be possible to perform the time
integral in Eq. (15) analytically, by replacing the instanta-
neous fields by the complex amplitudes and finding the
time-average in the usual way. It is also a simple task to
perform the time integration numerically, since the quan-
tities being integrated are quadratic in the fields, and will
vary as cosine squared, which can be integrated exactly
with three intervals per optical cycle. In addition, even for
a pulsed beam, the variation will be close enough to cosine
squared for a three intervals per carrier optical cycle to
give an accurate integral, unless the pulse is very short.
Thus, for most practical purposes, it is sufficient to calcu-
late the surface integral, without the volume integral.

At this point, it is useful to examine the convergence of
this integral when performed numerically. The conver-
gence as the spatial step size reduced is shown in Fig. 5,
with relative errors at various step sizes given in Table 1. A
step size of λ=20 results in a relative error of approximately
1%, and small step sizes give correspondingly small errors.
Thus, direct numerical integration is a feasible approach, if
moderate accuracy is sufficient.

It will be convenient to perform this integration in the
far field. For a time-harmonic field, the conditions under
which the volume terms in (15) cancel remain the same:
Fig. 5. Convergence of surface integral of the Maxwell stress tensor as
point spacing is reduced. The relative errors are given in Table 1. The grid
is a uniform angle polar and azimuthal grid; the grid spacing is the
spacing in the polar direction, and the azimuthal spacing along the
“equator”.
integrate over one optical cycle. This can provide some
advantages. First, it allows this integration to be performed
analytically in the T-matrix method, which will be
described below. Second, since the field is a spherical
wave in the far field, it can be represented by rays normal
to a spherical surface in the far field. This allows simple
calculation of the momentum flux in the geometric optics
approximation.

The scattering force in the Rayleigh limit is often
presented in terms of the conservation of momentum.
If we assume that the incident field is an infinite plane
wave, interference between the scattered field and the
incident field can be ignored, except in the exact forward
direction. The forward direction gives us the power—and
therefore momentum—removed from the incident beam,
and due to the symmetry of the scattered field, the
scattered field transports a total momentum of zero. Thus,
the scattering force can be written in terms of a radiation
pressure cross section. While such a derivation of the
scattering force depends on being able to neglect the
effects of interference and independently calculate the
momentum flux of the scattered field (which is zero)
instead of having to calculate the momentum flux of the
total outgoing field, the result is still useful for non-plane
wave fields. Generally, the scattering force is given by the
radiation pressure cross-section if, in the vicinity of the
particle, the field appears like that of a plane wave. Apart
from uniformity of the field, this also requires that E and H
are in phase, which will be violated in the near field of
other scattering objects. Therefore, the radiation pressure
cross-section can be used for a single isolated particle, but
not for particles near other scatterers. Not only is this
important for closely spaced scatterers, it can also be
important for calculating forces using the discrete-dipole
approximation (DDA), where the scatterer is represented
as a collection of closely packed dipole scatterers
[23,24,80]. It is possible to extend the concept of cross-
sections beyond the plane wave case [98,60,52], and thus
extend the validity of cross-sections to particles large
enough for the local field to appear non-plane wave.

2.3. Angular momentum

That electromagnetic waves carry angular momentum
in addition to linear momentum should not be surprising;
if a wave can exert a force, the moment of that force is a
torque. Just as force is a transfer of momentum, torque is a



Fig. 7. Radial spring constant as a function of particle size and refractive index. The trapping beam is focussed by an optimally filled objective of numerical
aperture 1.3, and the trapping takes place in water. As a trap is only viable when there is a restoring force acting upon the particle, we only show trap
stiffnesses for particles which are also axially trapped. However, there is still a periodic relationship with the particle radius.

Fig. 8. Equilibrium position as a function of particle size and refractive index. The trapping beam is focussed by an optimally filled objective of numerical
aperture 1.3, and the trapping takes place in water. There is no equilibrium position if the particle is not trapped (white region). As a trap is only viable
when there is a restoring force acting upon the particle, we only show trap stiffnesses for particles which are also axially trapped. However, there is still a
periodic relationship with the particle radius.

Fig. 6. Trap strength as a function of particle size and refractive index. The trapping beam is focussed by an optimally filled objective of numerical aperture
1.3, and the trapping takes place in water. The thick line represents an equipotential contour for a reasonable probability for the escape of Brownian
particles. The thin line is the cutoff between particles which experience trapping and which are pushed from the focus.
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transfer of angular momentum. This requires the fields to
carry angular momentum as well as momentum.

However, two features of the angular momentum of
electromagnetic fields can be quite surprising indeed. The
first is that a beam can carry angular momentum about its
axis—if angular momentum is the moment of momentum,
how can the momentum and the angular momentum be
parallel? The second surprise, which can partially explain
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the first, is the existence of spin angular momentum. By
definition, the spin density is the part of the angular
momentum density that is independent of the choice of
origin relative to which moments are taken [151]; it is
intrinsic angular momentum, not dependent on our choice
of coordinate system. The angular momentum density j
can be divided into an orbital angular momentum density l
and spin density s. Spin is named in analogy with classical
mechanics where a body can both undergo orbital
motion and spin about its own axis, and the total angular
momentum associated with the spinning of the body is
independent of the choice of origin. However, this analogy
is inexact, since in field theory it is the spin density which
is independent of choice of origin. In general, we can write

j¼ lþs: ð16Þ
The spin flux s of a plane electromagnetic wave

depends on its degree of circular polarisation s, defined as

s¼ ðIL� IRÞ=I ð17Þ
where IL and IR are the irradiances of the left- and right-
circularly polarised components [125], and is

s¼ sS=ω; ð18Þ
where S is the Poynting vector and ω is the optical
frequency of the time-harmonic field. This is the classical
equivalent to the quantum mechanical idea that photons
carry 7ℏ spin. The Cartesian components of the time-
averaged spin angular momentum flux density s are

si ¼ iϵ0ϵijkEjE
⋆
k =ð2ωÞ; ð19Þ

where the expression is summed over repeated indices
and the real part is taken [82,163,32]. Ex;y;z are the
Cartesian components of the complex amplitude E0, the
complex field amplitude, and ϵijk is the Levi–Civita symbol.
The orbital components are [82,163,32]

li ¼ iϵ0Ejðr� ∇ÞE⋆j =ð2ωÞ: ð20Þ
These give simple results for plane waves, rays, and
paraxial beams (and spherical waves in the far field, where
they are locally plane). If a beam has a uniform phase over
a plane, or, more generally, phase that is rotationally
symmetric about the beam axis, then the orbital angular
momentum flux density about the beam axis is zero.
Notable exceptions to this—that is, beams which carry
orbital angular momentum about the beam axis—are
optical vortex beams [78,134,133,129].

It is not possible to separate the total angular momen-
tum into spin and orbital angular momenta in a way that is
both gauge independent and Lorentz invariant [83,163,32].
It is, however, possible to do so in a gauge-independent
manner for time-harmonic fields. Since a non-plane wave
time-harmonic field is not time-harmonic if we view it in a
relatively moving frame, we can see that we have given up
Lorentz-invariance of the separation.

It is common to see statements such that the angular
momentum density is the moment of the linear momen-
tum density,

j¼ r� p¼ nr� S=c: ð21Þ
However, this cannot be correct, because it is equivalent
to stating that electromagnetic waves cannot carry spin.
However, this expression can be used to calculate the total
angular momentum of an electromagnetic wave, as long as
the fields are finite in extent [82]. Therefore, while Eq. (21)
is not the correct angular momentum density, we can still
make use of it in practical calculations. The mystery of why
we can use a wrong result to obtain a correct outcome can
be explained if we approach the problem using Lagrangian
field theory. From the Lagrangian for the electromagnetic
field, the conserved quantities related to translations and
rotations can be found via Noether's theorem. These are
the momentum and angular momentum [83,151,84]. The
canonical energy–momentum tensor (or canonical stress
tensor) which this procedure gives us depends on the
gauge, which motivates its transformation into the gauge-
invariant symmetric energy–momentum tensor [83]. The
canonical tensor gives us separate spin and orbital angular
momenta, and the symmetric tensor gives us Eq. (21). The
mystery is resolved when we note that the transformation
from canonical tensor to symmetric tensor is only valid if
the fields vanish sufficiently quickly at infinity [84]. Under
exactly the same conditions, both expressions for the
angular momentum density yield the same total angular
momentum [82,175,138]. The situation is analogous to the
existence of alternative expressions for the force density,
which gives the same total force when integrated. We can
approach the theoretical ambiguity here in the same spirit,
and use either angular momentum density, choosing one
or the other for computational convenience. That is, unless
we wish to know the spin angular momentum specifically.
In this case, we can calculate the spin density.

3. Computational modelling

We have considered theoretical approaches to the
calculation of optical forces and torques. We will now
consider the practical use of these methods. We will focus
on the T-matrix method, due to its generality and effi-
ciency. We will also consider the applicability and poten-
tial advantages of the approximate methods of Rayleigh
scattering and ray optics. Finally, we will briefly discuss
other approaches.

3.1. T-matrix method

The effect of a scattering object on the total electro-
magnetic field is often described by a scattering matrix.
However, a diverse range of matrix descriptions of scatter-
ing has the label “scattering matrix” attached to them, and
more detailed terminology is required. One of the most
common scattering matrices is the amplitude scattering
matrix, described the coherent scattering of a time-
harmonic wave in a plane-wave basis. The complex ampli-
tude of scattered field in the direction ðθscat;ϕscatÞ due
to an incident plane wave incident from the direction
ðθinc;ϕincÞ is
EðscatÞ0θ

EðscatÞ0ϕ

2
4

3
5¼

S11 S12
S21 S22

" #
EðincÞ0θ

EðincÞ0ϕ

2
4

3
5; ð22Þ

where the scattered field is given in the far field, where only
the θ and ϕ components are non-zero. When considering
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incoherent or partially polarised illumination, the Müller
matrix, where the fields are described by their Stokes
vectors, instead of their complex amplitudes, is useful.
However, for modelling optical trapping, where our trap-
ping beam is monochromatic, fully polarised, and coherent,
it is better to use the complex amplitudes of the fields.

While the plane wave basis is, in many ways, mathe-
matically simple, it is not most computationally conveni-
ent. One difficulty is that the set of basis functions is
continuous—that is, the plane waves making up the basis
can be smoothly transformed into each other. (The basis
set is described by continuously varying parameters kx and
ky (the x and y components of the wavevector) and the
polarisation (transverse electric (TE) or transverse mag-
netic (TM))). This means that the elements of the scatter-
ing matrix, Sij, are functions of the directions of incidence
and scattering. A discrete basis set can lead to a more
computationally friendly description of scattering.

If we begin with a discrete basis set, with basis func-
tions ψ ðincÞ

n and ψ ðscatÞ
n , where n is a mode index labelling the

functions, each ψn being a solution of the vector Helmholtz
equation, we can write the incident field amplitude as

EðincÞ
0 ¼ ∑

1

n
anψ ðincÞ

n ; ð23Þ

where an are the mode amplitudes (or expansion coeffi-
cients, or beam shape coefficients) of the incident wave.
Similarly, the scattered wave can be written as

EðscatÞ
0 ¼ ∑

1

k
pkψ

ðscatÞ
k ; ð24Þ

where pk are the mode amplitudes of the scattered wave.
Computationally, it will be necessary to truncate these
sums at some finite nmax; practical use requires a choice of
basis functions where convergence of the sum occurs by
this truncation. Since the resulting sets of amplitudes are
finite, we can write the incident and scattered waves as
column vectors a and p, and write their relationship in
matrix form as

p¼ Ta; ð25Þ
where T is the T-matrix, or transition matrix, or system
transfer matrix. This description of scattering requires that
the electromagnetic properties of the scattering object are
linear, and constant in time. This last requirement means
that the geometry of the object must be constant. In turn,
this means that the scattering is described in a coordinate
system fixed to the particle. (In principle, one can treat a
particle with variable geometry with the T-matrix method,
if the variation is slow enough to assume that we have a
succession of T-matrices. We also typically assume that the
incident field is monochromatic, but this is not a strict
requirement; what is required is that only discrete fre-
quencies are present (so that the basis is discrete); this
would be satisfied, for example, by a periodic series of
pulses.) This results in a constant T-matrix; the elements of
the T-matrix are numbers, rather than functions of angles.
The T-matrix elements are independent of the direction,
polarisation, and spatial variation of the incident light.

At this point, it is useful to pause and reflect on what
the T-matrix method is, and what it is not. The above
discussion essentially defines the T-matrix method; we
can more concisely state this definition as a matrix
description of the scattering properties of an object where
the incident and scattered fields are expanded in series of
suitable discrete basis functions. Even more briefly, we can
write Eq. (25) as a concise expression of this definition:
p¼ Ta. It has not been necessary to consider the set of
basis functions in detail—we have only specified that the
basis set must be discrete. For the simplest choices of
coordinate system (Cartesian, cylindrical, and spherical),
only the spherical coordinate system leads to a discrete
basis set. Thus, for an electromagnetic scattering problem,
where we want to know the electric and magnetic fields
(often in order to find the scattered power and scattering
pattern, but here we are more interested in using the fields
to calculate the optical forces), the most common choice of
basis set is the divergence-free solutions to the vector
Helmholtz equation (vector spherical wavefunctions, or
VSWFs; the details are given below). Indeed, some authors
give definitions restricting the T-matrix method to this
basis [119]. However, it seems to us to be better to retain a
more general definition, allowing the use of, for example,
spheroidal wavefunctions (note that [119] include such
work in their database), and covering non-electromagnetic
scattering, including cases where the fields are solutions of
an equation other than the vector Helmholtz equation. The
general definition also includes electromagnetic scattering
where the electromagnetic field is given in terms of
potentials rather than the electric field E and the magnetic
field H or B. This could include the vector potential A and
scalar potential Φ, Hertz vectors, scalar Hertz potentials, or
Bromwich potentials [55,64,54].

In the course of outlining the T-matrix method, it has
not been necessary to consider how we might calculate
the T-matrix or its elements, from which we can conclude
that the T-matrix method is independent of whatever
method we might choose to calculate the T-matrix. Thus,
the T-matrix method, by itself, is not a method for
calculating the scattering properties of an object, but
rather a method for describing the scattering properties
of an object. “T-matrix description of scattering” or
“T-matrix formulation of scattering” are more accurately
descriptive names—and are used in the literature [137,85,
87,53,127]. However, “T-matrix method” is widely used
and firmly entrenched. Given the lack of a method to
actually calculate the T-matrix as an integral part of the
T-matrix method/formulation/description, it is necessary to
choose a method; this is discussed in the following section.

Our definition of the T-matrix method includes a well-
known and widely used theory of electromagnetic scatter-
ing: Lorenz–Mie theory [105,115,38,162,53] (or Mie theory,
or Lorenz–Mie–Debye theory, etc.). Lorenz–Mie theory
is restricted to isotropic homogeneous spheres [17], and
assumes plane wave illumination. Despite these restric-
tions, all of the ingredients of the T-matrix method are
present: the fields are written as sums of vector spherical
wavefunctions, and a linear relationship is given between
the incident and scattered fields (the Mie coefficients an
and bn [162]). Since each incident VSWF only couples to a
single scattered VSWF, the T-matrix is diagonal, with the
Mie coefficients being the diagonal elements. Usually, the
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matrix nature of the mathematical description of scatter-
ing in Lorenz–Mie theory is left implicit, rather than stated
explicitly.

The restriction to plane wave illumination in Lorenz–
Mie theory can be very limiting, and the desire to model
the scattering of laser beams by particles provided strong
motivation for generalisation of the theory. This was
achieved in the form of generalised Lorenz–Mie theory
(GLMT) [55,64,54,57]. GLMT is not simply the T-matrix
method restricted to spherical scatterers. The T-matrix
method is a matrix description of the scattering properties
of a particle, while GLMT uses such a matrix description
(usually, as in Lorenz–Mie theory, implicitly), and in
addition, provides a method for calculating the T-matrix
(the Mie coefficients), and methods for calculating the
expansion coefficients of the beam, or beam shape coeffi-
cients. While the restriction to spherical particles might
appear to be quite limiting, we are very often interested in
the trapping of spherical particles, or particles that can be
approximated as spherical. (We can also readily treat
multi-layered spheres using GLMT [132,174,81].) We will
discuss the calculation of the T-matrix and the incident
beam below.

A key feature of the T-matrix method that makes it very
attractive for modelling optical tweezers is the efficiency
of repeated calculation for different conditions of illumi-
nation by monochromatic light. This is exactly the case we
encounter in optical tweezers, where the illumination
varies as the particle moves within the beam, and the
T-matrix description of scattering is a very attractive
framework for the modelling of optical tweezers, espe-
cially when considering the need for repeated calculations.
The efficiency of the method results from the separation of
the descriptions of the scattering properties of the particle
(written as the T-matrix) from the features of the incident
illumination. Similarly, if we are using GLMT, it is useful to
explicitly write it in the T-matrix formulation.

Once the T-matrix for a particle is calculated, we can
then make repeated calculations of the optical force and
torque for different positions and orientations within the
trapping beam. We can also make calculations for different
trapping beams, as long as the wavelength remains the
same, allowing, for example, investigation of the optimal
illumination. A simple example would be finding the
minimum numerical aperture required to trap a particular
particle, and a more complex example might be an evolu-
tionary optimisation of a structured light field produced by
a spatial light modulator (SLM) [69,94].

We can also note in passing that the efficiency of
repeated calculations with the T-matrix method is also
useful for conventional scattering problems, where one is
often interested in the scattering and extinction cross-
sections, averaged over all possible orientations. Such
orientation averages can be found by repeated calculations
for different orientations, or even analytically, since the T-
matrix describes the complete scattering properties of the
particle [116].

So far, we have not considered the set of basis functions
in detail, having only specified that the basis set must
be discrete. For the simplest choices of coordinate system
(Cartesian, cylindrical, and spherical), only the spherical
coordinate system leads to a discrete basis set. The first
step is to obtain a discrete basis set for solutions to the
scalar Helmholtz equation (i.e., a general solution of the
scalar Helmholtz equation in spherical coordinates, which
can be found by the separation of variables). A general
solution to the scalar Helmholtz equation ∇2Aþk2A¼ 0 is

A¼ ∑
1

n ¼ 0
∑
n

m ¼ �n
anmh

ð2Þ
n ðkrÞYnmðθ;ϕÞþpnmh

ð1Þ
n ðkrÞYnmðθ;ϕÞ;

ð26Þ
where hð1;2Þ

n ðkrÞ are spherical Hankel functions of the first
and second kinds, and Ynmðθ;ϕÞ are spherical harmonics.
The spherical harmonics can be written in terms of
associated Legendre functions Pnm(x) as

Ynmðθ;ϕÞ ¼ cnmPnmð cos θÞexpðmϕÞ; ð27Þ
where cnm are normalisation constants. Here, we are using
polar spherical coordinates, with θ being the co-latitude
measured from the þz-axis, and ϕ the azimuthal angle,
measured from the þx-axis towards the þy-axis. We
normalise the spherical harmonics such thatZ

Ynmðθ;ϕÞYn

n0m0 ðθ;ϕÞ dΩ¼ δnn0δmm0 : ð28Þ

Because we have chosen expð� iωtÞ for our time variation,
the spherical Hankel functions of the first kind, hð1Þn ðkrÞ, are
outgoing waves, and those of the second kind, hð2Þn ðkrÞ, are
incoming waves. Thus, we have a division of the total field
into incoming and outgoing portions. This is useful for the
calculation of optical force and torque, and absorbed
power. The incoming field transports momentum, angular
momentum, and energy inwards through a spherical sur-
face surrounding the origin of the coordinate system
(where the particle is located), and the outgoing field
transports these outwards. The differences between these
incoming and outgoing fluxes give the optical force and
torque, and the absorbed power.

However, the incoming field is not the same as the
incident field; the incident field is the field that would
exist if the scatterer was not present, and therefore
requires both incoming and outgoing parts. Both the
incoming and outgoing basis functions approach infinity
as r-0, while the incident field remains finite every-
where. A useful basis set for the incident field can be
constructed using the spherical Bessel functions

jn krð Þ ¼ 1
2

hð1Þn krð Þþhð2Þn krð Þ
� 	

ð29Þ

instead of the incoming Hankel functions. The total field is
then

A¼ ∑
1

n ¼ 0
∑
n

m ¼ �n
anmjnðkrÞYnmðθ;ϕÞþpnmh

ð1Þ
n ðkrÞYnmðθ;ϕÞ;

ð30Þ
where anm describes the incident field (unlike above,
where it described the incoming field), and pnm describes
the scattered field (again, unlike above, where it described
the outgoing field).

Thus, there are two basis sets we can use: an incoming–
outgoing basis, and an incident–scattered basis. The incom-
ing–outgoing basis is ideal for performing the calculation of
optical force and torque, and the incident–scattered basis is
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usually used for calculations of light scattering. The T-
matrix can be calculated in either basis; in our experience,
the incident–scattered basis can provide a more numeri-
cally stable calculation of the T-matrix when the particle
has a refractive index close to that of the surrounding
medium [150]. Conversion of the T-matrix between the
two bases is simple. From Eq. (29), we have
aðinc=scatÞnm ¼ 2aðin=outÞnm and aðinc=scatÞnm þ2pðinc=scatÞnm ¼ 2pðin=outÞnm , and
the T-matrices in the two bases are related by Tðin=outÞ ¼
2Tðinc=scatÞ þI. The T-matrix in the incoming–outgoing basis
is often called the S-matrix, and written as S.

We can now proceed to generate a general solution to
the vector Helmholtz equation from the solution to the
scalar Helmholtz equation [121,18]. For any scalar solution,

L¼∇ψ ; ð31Þ

M¼ � r̂L¼∇� r̂ψ ; ð32Þ

N¼ 1
k
∇�M; ð33Þ

are solutions to the vector Helmholtz equation. Note that

M¼ 1
k
∇�N: ð34Þ

L is longitudinal, i.e., ∇� L¼ 0, and M and N are trans-
verse; that is, ∇ �M¼ 0¼∇ � N. For electromagnetic scat-
tering, we only need M and N, while for more general
cases of scattering of vector waves, such as in elastody-
namics, all three solutions are required. If we begin with
our scalar solutions hð1;2Þn ðkrÞYnmðθ;ϕÞ, we obtain the vector
spherical wavefunctions (VSWFs)

Mð1;2Þ
nm ðkrÞ ¼Nnh

ð1;2Þ
n ðkrÞCnmðθ;ϕÞ ð35Þ

Nð1;2Þ
nm krð Þ ¼ hð1;2Þn ðkrÞ

krNn
Pnm θ;ϕð Þ

þNn hð1;2Þn�1 krð Þ�nhð1;2Þ
n ðkrÞ
kr

 !
Bnm θ;ϕð Þ ð36Þ

where Nn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p
are normalisation constants, and

Bnmðθ;ϕÞ ¼ r∇Ym
n ðθ;ϕÞ, Cnmðθ;ϕÞ ¼∇� ðrYm

n ðθ;ϕÞÞ, and
Pnmðθ;ϕÞ ¼ r̂Ym

n ðθ;ϕÞ are the vector spherical harmonics.
Mð1Þ

nm and Nð1Þ
nm are outward-propagating TE and TM multipole

fields, while Mð2Þ
nm and Nð2Þ

nm are inward-propagating multipole
fields, which we can combine to form the regular VSWFs

RgMnm krð Þ ¼ 1
2

Mð1Þ
nm krð ÞþMð2Þ

nm krð Þ
h i

; ð37Þ

RgNnm krð Þ ¼ 1
2

Nð1Þ
nm krð ÞþNð2Þ

nm krð Þ
h i

: ð38Þ

The incident field can be written as

EincðrÞ ¼ ∑
1

n ¼ 1
∑
n

m ¼ �n
anmRgMnmðkrÞþbnmRgNnmðkrÞ ð39Þ

and the scattered field as

EscatðrÞ ¼ ∑
1

n ¼ 1
∑
n

m ¼ �n
pnmM

ð1Þ
nmðkrÞþqnmN

ð1Þ
nmðkrÞ: ð40Þ

Truncating these sums at n¼ nmax, we can arrange the
coefficients anm, bnm, pnm, and qnm into the incident and
scattered field amplitude vectors used in the T-matrix
description of scattering:

a¼ a1;�1; a1;0; a1;1; a2;�2; a2;�1;…; anmax ;nmax ;
�

b1; �1; b1;0;b1;1; b2;�2; b2;�1;…; bnmax ;nmax

� ð41Þ

p¼ p1;�1; p1;0; p1;1;p2;�2;p2;�1;…; pnmax ;nmax
;

�
q1; �1; q1;0; q1;1; q2;�2; q2;�1;…; qnmax ;nmax

�
: ð42Þ

The radial term in each VSWF consists of spherical
Bessel functions. For kr less than approximately n, jnðkrÞ
� 0, so that for a scatterer that is contained within a radius
r0, convergence of the scattered field can be achieved for
nmax � kr0. Accurate convergence requires nmax somewhat
above kr, and a useful formula for good convergence is
nmax ¼ kr0þ3

ffiffiffiffiffiffiffi
kr0

3
p

[19,20,18].
3.1.1. Calculation of the T-matrix
Waterman [168,169], who developed the T-matrix

method, used the extended boundary condition method
(EBCM), also known as the null-field method, to calculate
the T-matrix. As a result, the T-matrix method and EBCM
are sometimes treated as synonymous. However, the
T-matrix formulation of scattering is independent of
the method used for the calculation of the T-matrix
[106,86,130,53,118,104,103]. A variety of methods have
been used to calculate the T-matrix, and many more
methods are, in principle, possible.

The EBCM is a widely used method for the calculation
of the T-matrix, being used, for example, in the widely
used T-matrix computer code by Mishchenko and Travis
[117]. However, the EBCM is restricted to star-shaped (i.e.,
the radial distance of the surface from the origin can be
described by a single-valued function rðθ;ϕÞ) isotropic and
homogeneous particles, and can suffer numerical difficul-
ties for extreme geometries, such as highly elongated or
highly flattened particles. Large particles also cause com-
putational difficulty. If particles for which the EBCM is not
applicable, or fails numerically, other methods must be
sought. Where the EBCM is applicable and numerically
reliable, it remains a fast, convenient, and accurate method
of calculating the T-matrix. A key advantage of the EBCM is
that it is a 2D method, requiring only surface integrals,
which reduces to a 1D method for axially symmetric
particles.

Often, in optical tweezers, we wish to model the
trapping of spherical particles. In this case, because the
VSWFs are orthogonal over a sphere, and there is no
coupling between different modes for a spherical scatterer,
the T-matrix is diagonal. The T-matrix elements can be
obtained analytically from the Lorenz–Mie solution for
scattering by a sphere [105,115,53].

For calculating the T-matrix of arbitrary particles, one
of the best choices appear to be the discrete dipole
approximation (DDA) [106,103]. Loke et al. [104] used
the finite-difference frequency-domain method (FDFD) to
calculate the T-matrix for non-uniformly anisotropic
objects [104]. Nieminen et al. [127] discuss the application
of the T-matrix method for the modelling of complex
objects in optical traps.
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3.1.2. Incident beam coefficients
In order to use the T-matrix to find the scattered field,

we must begin with a known incident field—it is necessary
to find with the VSWF mode amplitudes of the incident
field. In principle, we can find the mode amplitudes (i.e.,
the TE and TM multipole coefficients) of an arbitrary field
by direct calculation of the integral transform [61,51], by
integrating over two concentric spherical surfaces, or one
spherical surface if the field is known to be purely
incoming, purely outgoing, or regular. This is the projec-
tion of the field onto the basis function, and is conceptually
the same as finding the x component of a vector a by the
projection ax ¼ a � x̂ . The integral transform can also be
carried out by least-squares solution of an overdetermined
linear system [131].

Since the incident field is regular, one surface is
sufficient. This requires knowing the incident field over
the surface. We can model the objective focussing the
beam as a device that transforms the plane wavefronts of a
paraxial beam incident on the back aperture of the
objective to the spherical wavefronts of the non-paraxial
focussed beam, subject to truncation due to the finite size
of the back aperture and the finite numerical aperture.

If the incident beam is a single mode laser beam, most of
the multipole coefficients will be zero. Noting that the
azimuthal mode index m is the angular momentum of the
mode about the z-axis, in units of ℏ per photon, the only
values of m for which the mode amplitudes will be non-zero
for a Gaussian beam with beam axis along the z-axis will be
m¼ 71, with m¼ þ1 being the left-circularly polarised
component, and m¼ �1 being the right-circularly polarised
component [49]. The superposition of both circular polarisa-
tions will yield an elliptically or linearly polarised beam. In
some cases, over values of m will have non-zero amplitudes.
For example, Laguerre–Gauss beams [148,2,129], denoted
LGpℓ, carry ℓℏ orbital angular momentum per photon about
the beam axis, and the total angular momentum per photon
will be ðℓ71Þℏ, leading to non-zero amplitudes for modes
with m¼ ℓ71.

Both direct integration and our over-determined point-
matching method [131] work, but are not the most efficient
possible methods [157]. They are, however, very easily used
for arbitrary fields, including experimentally measured fields
[4]. A very fast method is the localised approximation
[59,56,51,122], which can be useful for specific types of beams
(including Gaussian beams). In principle, the localised approx-
imation can be used for arbitrary beam [50], but some initial
mathematical work is required (though symbolic computation
can be useful). While the computational efficiency of finding
the mode amplitudes of the incident beam is not a critical
factor in most cases, they need only to be calculated once for
any given beam, the localised approximation can still be
attractive in cases multiple incident beams are considered,
such as pulsed beams treated as superpositions of monochro-
matic beams [113,114].

While slow in comparison to the localised approxima-
tion, calculation of the integral transform by direct inte-
gration or over-determined point-matching is usually fast
enough in practice, especially for rotationally symmetric
beams such as Laguerre–Gauss beams (including the
TEM00¼LG00 Gaussian beam).
While calculation of the incident beam expansion
coefficients is necessary for use of the T-matrix method,
it can also be useful for other methods of calculating the
scattering of a highly non-paraxial beam. A key point is
that paraxial representations of beams, including those
with higher-order non-paraxial corrections [37,93], are not
solutions of the Helmholtz equation or even of the
Maxwell equations. Therefore, such paraxial models of
beams are not suitable for use in methods where the
incident field must be a solution of the Maxwell equations
or the Helmholtz equation. Converting such beam to VSWF
representations which are solutions of those equations can
provide incident beam models that are more widely
applicable [131,51,62,101].

For a tightly focussed beam, such as produced by an
optimally filled or overfilled high numerical aperture
objective, the beam waist w0 is small. Good convergence
of the VSWF representation of the beam is obtained if we
choose the truncation parameter nmax by assuming that a
radius of r¼ 2w0 enclosed the beam sufficiently well. Since
we do not know the beamwaist w0 in advance, we can use
the paraxial beam waist as a convenient approximation, if
the beam is not too tightly focussed [131], and use a
minimum truncation point of nmax ¼ 12 for more tightly
focussed beams. It is possible to account for spherical
aberration produced by the coverslip–water interface
[99,100].

This gives the mode amplitudes a and b for a coordi-
nate system where the beam axis coincides with the
z-axis, and the focal plane is at z¼0. We will label these
origin-focussed amplitudes a0 and b0. However, these can
only be used directly in the T-matrix calculation (25) if the
particle is also centred on the origin. If the particle is away
from the origin of this beam-centred coordinate system,
the particle-centred coordinate system in which the
T-matrix is constant will be different. So that both the
T-matrix and the beam are represented in the same
coordinate system, it is necessary to transform one of
them to the coordinate system of the other [39]. Typically,
it is faster and more convenient to transform the beam,
since then we only need to transform a vector, rather than
a matrix (i.e., a rank-2 tensor). The transformation is linear,
and known [152,36,159].

It is useful to separate the transformation into rotations
and a translation. A general transformation can be carried
out as a rotation, a translation along the (new) z-axis, and
a second rotation. This division of the total transformation
into sub-transformations is very important for computa-
tional efficiency.

Rotations can be written in terms of a matrix rotation
operator as

a¼ Ra0: ð43Þ
Since the radial mode index, or order, n gives the magni-
tude of the total angular momentum in ℏ per photon of the
mode, this magnitude will remain unchanged by a rotation
since the origin, about which moments are taken when
finding the angular momentum, does not move. Thus,
rotations will not couple modes of differing n; the trans-
formation matrix R is sparse. A convenient recursion
relation for calculating R is given by Choi et al. [25].
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A series of modern papers discussing rotations and their
applications to GLMT is also very useful [65,167,66,67,63].

Translations involve coupling between TE and TM
modes (unlike rotations) and can be written as

a¼ Aa0þBb0; ð44Þ

b¼ Ba0þAb0: ð45Þ
For an arbitrary translation, the transformation matrices
will be full matrices, rather than sparse. This would make
translations prohibitively slow to calculate. However,
translations along the z-axis will not couple modes of
different m; the azimuthal mode index m is the z-compo-
nent of the angular momentum and this will be
unchanged by such a translation since the distance to the
axis about which moments are taken is unchanged. This is
the reason why we decompose a general transformation
into a rotation, a translation along the z-axis, and a second
rotation. Since the translation matrices A and B will be
sparse for translations along the z-axis, we can obtain a
tremendous increase in computational efficiency [170].
This gain in efficiency is exploited in other methods such
as the fast multipole method (FMM) which depends
heavily on such translations [40,29,16]. The translation
matrices can be calculated most efficiently by using recur-
sion relations [90,96,18,71]; our implementation of trans-
lations is taken from Videen [164], who gives a concise and
simple account.

It is important to note that translations can increase the
required nmax for an accurate description of the beam. The
nmax for the original expansion of the beam, with the
origin at the focus, is found by considering a surface of
radius r0 ¼minðλ;2w0Þ that sufficiently encloses the beam.
If a new origin, away from the focus, is chosen the radius of
this surface enclosing the beam can become greater. For a
translation of distance d, a new nmax can be determined
using an enclosing sphere of radius r¼ r0þd. Since rota-
tions do not move the origin, and do not couple the
original modes to modes of differing n, nmax remains
unchanged by rotations.

3.1.3. Force and torque
As noted earlier, the spatial integration of the stress

tensor can be carried out analytically in the framework of
the T-matrix method. This is a result of the orthogonality
properties of the VSWFs. Since we can disregard the
volume integral in (14), the required integral is

F¼
Z
S
T � dA: ð46Þ

We can write the stress tensor in terms of its vector
components as

Tij ¼ ϵ EiEj�
1
2
δijjEj2

� �
þ1
μ

BiBj�
1
2
δijjBj2

� �
ð47Þ

where δij is the Kronecker delta function. In the far-field,
the radial components of the electric and magnetic fields
are zero. This means that four of the nine components
of the stress tensor are also zero. The only non-zero
components are Trr, Tθθ, Tθϕ, Tϕθ , and Tϕϕ. Since we are
considering a spherical surface in the far field, the area
element is

dA¼ r̂r2 sin θ dθ dϕ: ð48Þ
The integral then becomes

F¼∬ r̂Trrr2 sin θ dθ dϕ ð49Þ
from which we can write the time average in terms of the
complex amplitudes (instead of the instantaneous fields) as

F¼ �1
2
∬ r̂ ϵ jE0j2

� �þμ jH0j2
� �� �

r2 sin θ dθ dϕ: ð50Þ

In the far field, this is equivalent to integrating the
Poynting vector (which is purely radial in the far field)
since the field is locally a plane wave, with the electric and
magnetic field amplitudes related by the impedance. This
integral can be separated into the Cartesian components of
the force:

Fz ¼ �1
2
∬ ϵ jE0j2

� �þμ jH0j2
� �� �

r2 cos θ sin θ dθ dϕ; ð51Þ

Fx ¼ �1
2
∬ r̂ ϵ jE0j2

� �þμ jH0j2
� �� �

r2 sin 2θ cos ϕ dθ dϕ; ð52Þ

and

Fy ¼ �1
2
∬ r̂ ϵ jE0j2

� �þμ jH0j2
� �� �

r2 sin 2θ sin ϕ dθ dϕ: ð53Þ

The far field limits of the VSWFs are

Mnm ¼Nn

kr
ðiÞnþ1e� ikrCnm; ð54Þ

Nnm ¼Nn

kr
ðiÞne� ikrBnm: ð55Þ

If the fields are written as sums over the far-field limits of the
VSWFs, and substituted into the integral above, the integral is
a sum of products of spherical harmonics and trigonometric
functions. Since the spherical harmonics are orthonormal (i.e.,R
YnmY

n

n0m0 dΩ¼ δnn0δmm0 ), and the product of a trigonometric
function of θ or ϕ and a spherical harmonic can be expressed
as a sum of spherical harmonics with mode indices equal to
the original mode indices or the original mode indices 71
[1], this integral can be reduced to a sum of products of mode
amplitudes with the same or adjacent indices n and m
[42,32,128]. Similarly, the angular momentum flux can be
found by integrating the moment of the momentum flux; in
this case, it is important to take the moment first, and then
find the far field limit. If we wish to find spin and orbital
components of the torque separately, we can write the spin
flux in terms of the circular polarisation, and integrate over
the surface. The orbital component of the torque can be found
by subtracting the spin torque from the total torque [32].

The integral of the Poynting vector gives an even
simpler result for the flux of energy, so that the incident
power is given by

P ¼ ∑
1

n ¼ 1
∑
n

m ¼ �n
janmj2þjbnmj2 ð56Þ

where we have chosen units for anm and bnm so that no
further unit conversion coefficients are needed here. This
allows simple calculation of the power and the momentum
flux. If we wish to calculate fields in SI units, we can divide
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these mode amplitudes by ð2Zk2Þð1=2Þ. Stout et al. [156]
discuss the issue of beam power normalisation.

We can use the power to convert the calculated force
into the dimensionless force efficiency Q . The axial trap-
ping efficiency Qz is

Qz ¼
2
P

∑
1

n ¼ 1
∑
n

m ¼ �n

m
nðnþ1ÞRe a⋆nmbnm�p⋆nmqnm

� �

� 1
nþ1

nðnþ2Þðn�mþ1Þðnþmþ1Þ
ð2nþ1Þð2nþ3Þ

� �1=2
�Reðanma⋆nþ1;mþbnmb

⋆
nþ1;m

�pnmp
⋆
nþ1;m�qnmq

⋆
nþ1;mÞ: ð57Þ

The torque efficiency about the z-axis is

τz ¼ ∑
1

n ¼ 1
∑
n

m ¼ �n
m janmj2þjbnmj2�jpnmj2�jqnmj2
� �

=P: ð58Þ

Calculation of forces and torques from the expansion
coefficients of the fields has a long history in GLMT
[58,64,107,57], and the expressions given in these papers
are useful when using GLMT formulated in terms of
Bromwich potentials. The versions given in the text above
are in terms of the VSWF expansions of the fields, which
are useful when using a typical T-matrix formulation.

3.1.4. A recipe for optical tweezers via the T-matrix method
We can summarise the calculation of optical forces and

torques using the T-matrix method as a recipe:
1.
 Calculate the T-matrix.

2.
 Calculate the incident beam coefficients a0 and b0 in a

coordinate systemwith the original at the focal point of
the beam.
3.
 (a) Transform the incident beam coefficients from the
focal point centred coordinate system to a coordi-
nate system centred on the particle.

(b) Find the scattered field coefficients, using p¼ Ta.
(c) Find the force and torque.
(d) Repeat steps in (3) for different particle positions

and orientations if desired.
3.1.5. Optical Tweezers Toolbox
A free Matlab implementation of the above recipe, the

Optical Tweezers Toolbox [128,154] is available from
�
 http://www.physics.uq.edu.au/people/nieminen/soft
ware.html (Matlab version) or
�
 http://www.physics.uq.edu.au/omg/Links.html (Matlab
and Cþþ library).

3.1.6. Examples
As an example of the calculation of optical forces, we

present results showing some of the important quantities
describing optical traps (see Section 2): the trap strength,
the axial equilibrium position, and the radial spring
constant (Figs. 6–8). We show the variation with particle
size and refractive index, for an optical trap with the
trapping beam focussed by an optimally filled objective
of numerical aperture 1.3. These quantities also depend on
the numerical aperture of the trapping beam, and similar
“landscapes” can be generated to show this dependence.

3.2. Rayleigh approximation

We saw above that the Rayleigh approximation gives us
analytical formulae for the conservative and non-
conservative parts of the force (the gradient and scattering
forces, respectively). However, to make use of these
formulae requires calculation of the fields, and for the
tightly focussed beams typically used in optical tweezers,
no simple analytical formula is available for the fields; this
calculation is a numerical task, and much of the attrac-
tiveness of the Rayleigh limit result evaporates.

We could consider using the T-matrix method for a
very small particle. For a sufficiently small particles, we
can truncate the T-matrix at nmax ¼ 1, retaining only the
dipole terms. If we were to also discard the magnetic
dipole (i.e., TE) terms, we would be left with the usual
Rayleigh approximation. Since the integral giving the force
in the T-matrix method is performed analytically, it is not
necessary to actually calculate the fields at any point. To
use the Rayleigh formulae, we would need to calculate the
field and the gradient of jEj2 at the location of the particle;
to find the force over a region, we require the fields and
gradient over the region. Therefore, in the general case,
there is a very little computational gain, or even a loss,
from using the Rayleigh approximation.

However, it can be possible to approximate the trap-
ping field, with a consequent analytical result for the
forces. For example, if the trapping beam is not too tightly
focused, it may be possible to approximate it using the
paraxial formula, or at least low-order corrections to the
paraxial formula [93,37].

In addition, if it is difficult to obtain the VSWF expan-
sion of the incident field, the Rayleigh approximation force
formulae can be useful. One example might be finding the
optical forces on a small particle in a waveguide, or in a
time-varying field calculated by a method such as the
finite-difference time-domain method (FDTD).

It is useful to examine the range of particle sizes for
which the Rayleigh formulae are accurate. The forces given
by the Rayleigh formulae and the dipole-only T-matrix
method, and the exact force are compared in Fig. 9, showing
that the Rayleigh formulae are accurate for particles less
than 1/10 of a wavelength in radius, as expected [74].

The Rayleigh approximation provides simple and clear
results for the scaling of gradient, scattering, and absorp-
tion forces for small particles, and, if a suitable approx-
imation for the trapping field can be made, can allow
analytical formulae for these forces. This possibility of
analytical results, even if only approximate due to simpli-
fication of the beam, is perhaps the most useful contribu-
tion to the computation of forces from the Rayleigh
approximation, as well as being useful for understanding
the physical processes acting in optical tweezers.

3.3. Ray optics

While the theoretical benefit of the Rayleigh approx-
imation is clear, with the identification of gradient and

http://www.physics.uq.edu.au/people/nieminen/software.html
http://www.physics.uq.edu.au/people/nieminen/software.html
http://www.physics.uq.edu.au/omg/Links.html


Fig. 9. Comparison between Rayleigh scattering forces and exact results. For a particle at the focus, the gradient force is zero, and the total force is the
scattering force (left). The gradient force is purely responsible for the radial spring constant (right). The comparison shows the force given by the Rayleigh
approximation force formulae, the T-matrix method with the T-matrix truncated at nmax ¼ 1, and the exact result. The Rayleigh formulae are accurate for
particles less than 1/10 of a wavelength in radius.

T.A. Nieminen et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 146 (2014) 59–80 75
scattering forces, the situation is less clear with the
geometric optics approximation. We can distinguish
between two distinct forces when a ray interacts with a
surface—reflection forces, and refraction forces. This
invites an identification between reflection forces and
the scattering force, and refraction forces and the gradient
force [9]. However, for any given ray, it is possible for the
ray to undergo both refraction and reflection as it passes
through the trapped particle, preventing a clear separation
of these forces. However, it is reasonable to label the force
due to any ray that has been reflected, whether or not it
has also undergone refraction, as a reflection force, espe-
cially since the reflection coefficient is relatively small due
to the small refractive index contrast between the trapped
particle and the surrounding medium (if the reflectivity is
not small, the particle is typically not trapped, as the
reflection forces push it out of the trap).

The geometric optics approximation is often described
as a large particle approximation. That the particle be
large is indeed a requirement, but we also require radii
of curvature of the surface of the particle to be large
compared to the wavelength, and so on. We will note an
important additional requirement later, but for the
moment, we can see that these conditions will be satisfied
by a spherical particle that is large compared to the
wavelength. For the scattering force acting on a particle
at the focus of the trapping beam, the rays all meet the
particle surface at normal incidence. If we make the
approximation of only including single reflections from
the first and second surfaces, the scattering force will be

Fscat ¼ 4Rp¼ 4
m�1
mþ1

� �2

p; ð59Þ

where p is the momentum flux of the beam (which will
be less than nP/c which we would have for a parallel beam
of power P, due to the convergence of the beam), and R is
the Fresnel reflection coefficient at normal incidence. (For
simplicity, this assumes that the power incident on the
first and second surfaces is the same; this over-estimates
the reflection force by 3%.) The momentum flux can be
calculated numerically. This ray optics scattering force is
compared with the exact result in Fig. 10. It is immediately
obvious that the ray optics scattering force is a poor
approximation, for spherical particles of any size.

The radial spring constant can also be simply calcu-
lated. Each surface will cause the centre of the beam to
deviate away from the original beam axis, by an amount
depending on the radial displacement of the particle from
the axis and the optical power of the curved surface.
Neglecting spherical aberration, the power of each surface
of the sphere is given by Popt ¼ ðnparticle�nmediumÞ, and the
radial spring constant will be

kr ¼
Fr
x
¼ 2

Popt

nmedium
jpj ¼ 2

m�1
a

p ;j
 ð60Þ

where x is the radial displacement of the sphere from the
beam axis, and a is the radius of the sphere. (For simplicity,
the reduction in power due to reflection is neglected. This
will result in an overestimate of the spring constant of
approximately 3%.) The ray optics and exact radial spring
constants are compared in Fig. 10. Considering the differ-
ence between the ray optics and the exact scattering
forces, the agreement for the spring constant is surpris-
ingly good. The ray optics spring constant is systematically
above the exact curve due to the neglect of reflection; if
this was included, the exact curve would vary about the
ray optics curve.

In both cases, the exact result shows rapid variation of
the force with particle size. This is due to interference
effects, which are ignored in the ray optics calculation.
Essentially, if light reflected from the front surface of the
sphere interferes constructively with light reflected
from the rear surface, the reflectivity is increased. If the
interference is destructive, the reflectivity is decreased.
This strongly affects the scattering force from large spheres
[108,155], and consequently affects the equilibrium posi-
tion of trapped particles along the beam axis. Since the
geometric optics approximation neglects such interference



Fig. 11. Ray optics prediction of axial trap strength. The maximum axial
restoring force against the direction of propagation occurs when the
transmitted beam emerges as parallel as possible. If the beam width w of
the emergent beam is not sufficiently large compared to the wavelength,
the beam will be divergent, rather than parallel, even if the indicative
rays emerge parallel.

Fig. 10. Comparison between ray optics forces and exact results. For a particle at the focus, the gradient force is zero, and the total force is the scattering
force (left). The gradient force is purely responsible for the radial spring constant (right). The ray optics result is very poor for the scattering force, and
surprisingly accurate for the radial spring constant. The ray optics spring constant is systematically above the exact curve due to the neglect of reflection; if
this was included, the exact curve would vary about the ray optics curve.
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effects, the geometric optics calculation completely fails to
predict this effect, even for large spheres where the
approximation is usually assumed to be accurate. Since
the refractive index difference between the particle and
the surrounding medium is small (or the particle would be
too reflective to be able to be trapped), only a small
fraction of the light will be reflected, whether the reflec-
tivity is high or low. From the conservation of energy, it is
clear that the absolute variation in the reflected power
must be the same as the variation in the transmitted
power. However, this variation is a large relative variation
in the reflected power, and only a small relative variation
in the transmitted power. Thus, the ripples in the scatter-
ing force are large, and the ripples in the gradient force
are small.

This is the first additional condition we find for ray
optics to be accurate: interference effects must be negli-
gible. The failure to predict the strong variation of scatter-
ing force with size due to interference is not entirely a bad
thing. The effect seen in Fig. 10 is for a perfect sphere, and
this is an idealisation that is often not matched by the
actual particle within the trap. For a less perfectly spherical
large particle, the optical path length for different rays can
easily vary by a wavelength, which would result in an
averaging of such interference effects in practice. Thus, the
ray optics result can more accurately model the real
particle, by automatically including this averaging [112].

The small change in the transmitted power with particle
size means that we can consider interference effects small
enough to ignore even if they strongly affect the scattering
force. As a result, the ray optics gradient force is a good
prediction of the exact gradient force. Interestingly, this is
true even for spheres well below the sizes often considered
to be necessary for accuracy of the geometric optics approx-
imation (typically a� 5λ or greater).

From this, we can see that the geometric optics approx-
imation can give quantitatively accurate results for some
elements of optical trapping, but gives poor results for
others. One important parameter of optical traps that is
poorly predicted is the axial trap strength—even when
other results, such as the spring constant and radial trap
strength, are given accurately, the axial trap strength (i.e.,
the maximum restoring force in the direction opposite to
the beam propagation direction, which is an important
parameter since this is usually the weakest direction of
trapping) can be incorrectly given by a factor of 2 by
geometric optics [88,126].

This is a special case of a more general failure of
geometric optics—the focal region of the beam is not
accurately represented. As the most obvious example of
this, ray optics predicts a focal spot of zero width and
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infinite irradiance, which we do not obtain in reality. This
is the second addition condition for applicability of the ray
optics approximation. Surfaces which interact with the
rays must lie where the focused beam is accurately
modeled by rays. That is, all such surfaces must lie in the
far-field of the beam, away from the focus, where the
wavefronts are spherical and the angular variation of
intensity does not change with propagation. This is an
important difference between ray optics modeling of the
interaction of an object with a focused beam and with a
plane wave—in the latter case, this condition is automati-
cally satisfied everywhere. With a focused beam, we must
make sure that no surface is near the focus. Unfortunately,
the maximum axial restoring force often occurs when the
near surface is near the focus, and the axial trap strength is
poorly predicted (Fig. 11).

With the ray optics approximation, we see that good
quantitative results can be obtained even for particles
smaller than the usually accepted regime of applicability
of the approximation. On the other hand, we find an
additional condition of applicability, that all surfaces of
the particle must be away from the focus.

However, we also find that exact methods of calculating
the optical forces grow linearly with particle size, or worse
(sometimes much worse!), while the computational
demands of ray optics are independent of particle size.
Therefore, ray optics remains a potentially valuable com-
putational tool, making some calculations of interest
feasible, or feasible in the absence of a supercomputer,
even if some caution is required.

In addition, ray optics provides an averaging over
interference effects due to particle size that can either
cause the model to fail or can be highly beneficial,
depending on the situation. For example, if we are con-
sidering a large particle that is only approximately sphe-
rical, such as a large animal cell, we would not expect to
see strong interference effects, since the departure from
exact sphericity will lead to averaging of such effects. Since
the ray optics model provides this averaging with no
further computational overhead, it can be the ideal
method for calculating optical forces, as long as the surface
of the particle is away from the focus.

3.4. Other approaches to computational modelling

A variety of other methods can be used for modelling
optical tweezers. Where particles are too large for the
Rayleigh approximation, too small for ray optics (or inter-
ference effects are important), and have geometries that
prevent the use of Lorenz–Mie theory or simple T-matrix
calculation methods such as EBCM, other methods must be
used. Many of these alternative methods could be used to
either calculate the T-matrix [127] or to directly calculate
the optical forces. Which of these is the better option
depends on to what extent repeated calculations are
required. A broadly usable method for calculating the
T-matrix by such general methods is to calculate it
column-by-column, by solving the scattering problem for
illumination consisting of single-mode VSWF fields [130].
This requires approximately 4nmax separate scattering
calculations. If this is significantly smaller than the
repeated calculations required, it is better to calculate
the T-matrix, and then use that to find the optical forces
and torques. This also has the advantage of analytical
integration to find the force from the momentum flux.

Some candidate methods are the finite element method
[172,171], the finite-difference time-domain (FDTD) method
[47,141], and the discrete-dipole approximation (DDA)
[80,149]. DDA provides an interesting example, since the
particle is represented as a collection of dipoles, and the
Rayleigh force formulae can be used to determine the force
on each dipole. In this way, internal stresses within the
particle can be found.

4. Conclusion

We have reviewed the theory and computational mod-
elling of optical tweezers. Our discussion of computational
modelling focussed on the T-matrix method, which is an
attractive method for calculating the optical forces for two
main reasons: it is very efficient for repeated calculations,
and allows accurate calculation of the force via analytical
integration of the stress tensor (expressed as a sum of
products of field expansion coefficients). A free Matlab
implementation is available [128,154].

Approximate methods such as Rayleigh scattering pro-
vide theoretical insight that is lacking in purely numerical
methods. In addition, such approximate methods remain
useful in their regimes of applicability.

A great deal of work remains in modelling optical
trapping. Possible topics for further work include
improved methods for the modelling of arbitrary particles,
including complex media such as anisotropic particles and
particles composed of metamaterials, the modelling of
non-optical forces, including contact between particles,
and particles and their surroundings, modelling of fluid
flow, including hydrodynamic interaction between parti-
cles and the modelling of convective flow. Other problems
include particles with non-linear electromagnetic proper-
ties, particles that are deformable or otherwise change
shape, trapping in media with complex optical properties,
and problems with a large range of important length
scales. Thus, it can be seen that, although a great deal of
productive work has been done, much remains, and the
interested researcher can usefully invest much time at the
coal-face of modelling optical tweezers.
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