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5. General Characteristics of Detectors

As an introduction to the following chapters on detectors, we will define and describe
here some general characteristics common to detectors as a class of devices. For the
reader without detector experience, these characteristics will probably take on more sig-
nificance when examples of specific detectors are treated. He should not hesitate to
continue on, therefore, and return at a later time if he has not fully understood the con-
tents of this chapter.

While the history of nuclear and elementary particle physics has seen the develop-
ment of many different types of detectors, all are based on the same fundamental prin-
ciple: the transfer of part or all of the radiation energy to the detector mass where it is
converted into some other form more accessible to human perception. As we have seen
in Chap. 2, charged particles transfer their energy to matter through direct collisions
with the atomic electrons, thus inducing excitation or ionization of the atoms. Neutral
radiation, on the other hand, must first undergo some sort of reaction in the detector
producing charged particles, which in turn ionize and excite the detector atoms. The
form in which the converted energy appears depends on the detector and its design. The
gaseous detectors discussed in the next chapter, for example, are designed to directly
collect the ionization electrons to form an electric current signal, while in scintillators,
both the excitation and ionization contribute to inducing molecular transitions which
result in the emission of light. Similarly, in photographic emulsions, the ionization in-
duces chemical reactions which allow a track image to be formed, and so on.

Modern detectors today are essentially electrical in nature, i.e., at some point along
the way the information from the detector is transformed into electrical impulses which
can be treated by electronic means. This, of course, takes advantage of the great pro-
gress that has been made in electronics and computers to provide for faster and more
accurate treatment of the information. Indeed, most modern detectors cannot be ex-
ploited otherwise. When discussing “detectors”, therefore, we will also take this to
mean the electronics as well. This, of course, is not to say that only electrical detectors
are used in modern experiments, and indeed there are many other types which are
employed. However, if an electrical detector can be used, it is generally preferred for
the reasons already mentioned. Our discussion in the following sections, therefore, will
only be concerned with this type.

5.1 Sensitivity

The first consideration for a detector is its sensitivity, i.e., its capability of producing a
usable signal for a given type of radiation and energy. No detector can be sensitive to
all types of radiation at all energies. Instead, they are designed to be sensitive to certain
types of radiation in a given energy range. Going outside this region usually results in
an unusable signal or greatly decreased efficiency.
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Detector sensitivity to a given type of radiation of a given energy depends on several
factors:

1) the cross section for ionizing reactions in the detector

2) the detector mass

3) the inherent detector noise

4) the protective material surrounding the sensitive volume of the detector.

The cross-section and detector mass determine the probability that the incident radia-
tion will convert part or all its energy in the detector into the form of ionization. (We
assume here that the properties of the detector are such that the ionization created will
be efficiently used.) As we saw in Chap. 2, charged particles are highly ionizing, so that
most detectors even of low density and small volume will have some ionization pro-
duced in their sensitive volume. For neutral particles, this is much less the case, as they
must first undergo an interaction which produces charged particles capable of ionizing
the detector medium. These interaction cross sections are usually much smaller so that
a higher mass density and volume are necessary to ensure a reasonable interaction rate,
otherwise the detector becomes essentially transparent to the neutral radiation. The
mass required, depends on the type of radiation and the energy range of interest. In the
case of the neutrino, for example, detector masses on the order of tons are usually
necessary!

Even if ionization is produced in the detector, however, a certain minimum amount
is necessary in order for the signal to be usable. This lower limit is determined by the
noise from the detector and the associated electronics. The noise appears as a fluctuat-
ing voltage or current at the detector output and is always present whether there is
radiation or not. Obviously, the ionization signal must be larger than the average noise
level in order to be usable. For a given radiation type in a given energy range, the total
amount of ionization produced is determined by the sensitive volume,

A second limiting factor is the material covering the entrance window to the sensi-
tive volume of the detector. Because of absorption, only radiation with sufficient
energy to penetrate this layer can be detected. The thickness of this material thus sets a
lower limit on the energy which can be detected.

5.2 Detector Response

In addition to detecting the presence of radiation, most detectors are also capable of
providing some information on the energy of the radiation. This follows since the
amount of ionization produced by radiation in a detector is proportional to the energy
it loses in the sensitive volume. If the detector is sufficiently large such that the radia-
tion is completely absorbed, then this ionization gives a measure of the energy of the
radiation. Depending on the design of the detector, this information may or may not be
preserved as the signal is processed, however.

In general, the output signal of electrical detectors is in the form of a current pulse K
The amount of ionization is then reflected in the. electrical charge contained in this

! Detectors may also be operated in a continuous mode in which the signal is a continuous current or voltage
varying in time with the intensity of the radiation. This can be performed by electrically integrating the num-
ber of pules over a certain period of time. '
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signal, i.e., the integral of the pulse with respect to time. Assuming that the shape of
the pulse does not change from one event to the other, however, this integral is directly
proportional to the amplitude or pulse height of the signal, so that this characteristic
may be used instead. The relation between the radiation energy and the total charge or
pulse height of the output signal is referred to as the response of the detector.

Ideally, of course, one would like this relation to be linear although it is not ab-
solutely necessary. It does, however, simplify matters greatly when transforming the
measured pulse height to energy. For many detectors, the response is linear or approxi-
mately so over a certain range of energies. In general, however, the response is a func-
tion of the particle type and energy, and it does not automatically follow that a detector
with a linear response for one type of radiation will be linear for another. A good
example is organic scintillator. As will be seen later, the response is linear for electrons
down to a very low energies but is nonlinear for heavier particles such as the proton,
deuteron, etc. This is due to the different reaction mechanisms which are triggered in
the medium by the different particles.

3.3 Energy Resolution. The Fano Factor

For detectors which are designed to measure the energy of the incident radiation, the
most important factor is the energy resolution. This is the extent to which the detector
can distinguish two close lying energies. In general, the resolution can be measured by
sending a monoenergetic beam of radiation into the detector and observing the result-
ing spectrum. Ideally, of course, one would like to see a sharp delta-function peak. In
reality, this is never the case and one observes a peak structure with a finite width,
usually Gaussian in shape. This width arises because of fluctuations in the number of
ionizations and excitations produced.

The resolution is usually given in terms of the full width at half maximum of the
peak (FWHM). Energies which are closer than this interval are usually considered un-
resolvable. This is illustrated in Fig. 5.1. If we denote this width as AE, then the relative
resolution at the energy E is

Resolution = AE/E . (5.1)

Equation (5.1) is usually expressed in percent. A Nal detector has about a 8% or 9%
resolution for yp-rays of about 1 MeV, for example, while germanium detectors have
resolutions on the order of 0.1%!

Fig. 5.1. Definition of energy resolution.
Two peaks are generally considered to be
resolved if they are separated by a distance
greater than their full widths at half maxi-
mum (FWHM). The solid line shows the sum
of two identical Gaussian peaks separated by
just this amount
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In general, the resolution is a function of the energy deposited in the detector, with
the ratio (5.1) improving with higher energy. This is due to the Poisson or Poisson-like
statistics of ionization and excitation. Indeed, it is found that the average energy
required to produce an ionization is a fixed number, w, dependent only on the material.
For a deposited energy E, therefore, one would expect on the average, J = E/w ioniza-
tions. Thus as energy increases, the number of the ionization events also increases
resulting in smaller relative fluctuations.

To calculate the fluctuations it is necessary to consider two cases. For a detector in
which the radiation energy is not totally absorbed, for example, a thin transmission
detector which just measures the dE/dx loss of a passing particle, the number of signal-
producing reactions is given by a Poisson distribution. The variance is then given by

2=, (5.2)

where J is the mean number of events produced. The energy dependence of the resolu-
tion can then be seen to be

rR=235Y7 _ 235 2 (5.3)
J l/ E

where the factor 2.35 relates the standard deviation of a Gaussian to its FWHM. Thus
the resolution varies inversely as the square root of the energy.

If the full energy of the radiation is absorbed as is the case for detectors used in
spectroscopy experiments, the naive assumption of Poisson statistics is incorrect. And
indeed, it is observed that the resolution of many such detectors is actually smaller than
that calculated from Poisson statistics. The difference here is that the total energy
deposited is a fixed, constant value, while in the previous case, the energy deposited can
fluctuate. The total number of ionizations which can occur and the energy lost in each
ionization are thus constrained by this value. Statistically, this means that the ioniza-
tion events are not all independent so that Poisson statistics is not applicable. Fano
[5.1] was the first to calculate the variance under this condition and found

o’=FJ, (5.4

where J is the mean ionization produced and F is a number known as the Fano factor.

The factor F is a function of all the various fundamental processes which can lead
to an energy transfer in the detector. This includes all reactions which do not lead to
ionization as well, for example, phonon excitations, etc. It is thus an intrinsic constant
of the detecting medium. Theoretically, F is very difficult to calculate accurately as it
requires a detailed knowledge of all the reactions which can take place in the detector.
From (5.4), the resolution is then given by

R=235 ———I'ff=2.35 ‘/ %lv— ¥ (5.5)

3

If F =1, the variance is the same as that for a Poisson distribution and (5.5) reduces to
(5.3). This seems to be the case for scintillators, however, for many detectors such as
semiconductors or gases, F<1. This, of course, greatly increases the resolution of these
types of detectors.
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In addition to the fluctuations in ionization, a number of external factors can affect
the overall resolution of a detector. This includes effects from the associated electronics
such as noise, drifts, etc. Assuming all these sources are independent and distributed as
Gaussians, the total resolution E is then given by (4.64), i.c.,

(4E)? = (AE4)* + (AE o))’ + - . . . (5.6)

3.4 The Response Function

For the measurement of energy spectra, an important factor which must be considered
is the response function of the detector for the type of radiation being detected. This is
the spectrum of pulse heights observed from the detector when it is bombarded by a
monoenergetic beam of the given radiation. Up to now, we have assumed that this
response spectrum is a Gaussian peak. If we ignore the finite width for a moment, this
essentially corresponds to a Dirac delta function, i.e., for a fixed incident energy the
output signal has a single, fixed amplitude. Then, if the response is linear, the spectrum
of pulse heights measured from the detector corresponds directly to the energy spec-
trum of the incident radiation. This is the ideal case. Unfortunately, a Gaussian peak
response is not always realized particularly in the case of neutral radiation.

The response function of a detector at a given energy is determined by the different
interactions which the radiation can undergo in the detector and its design and
geometry. To take an example, consider monoenergetic charged particles, say elec-
trons, incident on a detector thick enough to stop the particles. Assuming all the elec-
trons lose their energy by atomic collisions, it is clear that the spectrum of pulse heights
will be a Gaussian peak. In reality, however, some of the electrons will scatter out of
the detector before fully depositing their energy. This produces a low energy tail.
Similarly some electrons will emit bremsstrahlung photons which may escape from the
detector. This again gives rise to events at a lower energy than the peak. The response
function thus consists of a Gaussian peak with a low energy tail determined by the
amount of scattering and bremsstrahlung energy loss. If the tail is small, however, this
can still be a reasonable approximation to the ideal Gaussian response depending on
the precision desired. Moreover, the response function can be improved by changing
the design and geometry of the detector. A material of lower atomic number Z can be
chosen, for example, to minimize backscattering and bremsstrahlung. Similarly if the
detector is made to surround the source, backscattering electrons will be captured thus
decreasing the escape of these particles, etc.

To see how the response function can change with radiation type, consider the same
detector with gamma rays instead. As we have already mentioned, gamma rays must
first convert into charged particles in order to be detected. The principal mechanisms
for this are the photoelectric effect, Compton scattering and pair production. In the
photoelectric effect, the gamma ray energy is transferred to the photoelectron which is
then stopped in the detector. Since the energy of all the photoelectrons is the same, this
results in a sharp peak in the pulse height spectrum, which is the desired Gaussian
response. However, some gamma rays will also suffer Compton scatterings. As given
by (2.113), the Compton electrons are distributed continuously in energy so that a dis-
tribution, similar to Fig. 2.24, also appears in the response function. This, of course,
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Fig. 5.2a,b. The response functions of two different detectors for 661 keV gamma rays. (a) shows the
response of a germanium detector which has a large photoelectric cross section relative to the Compton scat-
tering cross section at this energy. A large photopeak with a relatively small continuous Compton distribu-
tion is thus observed. (b) is the response of an organic scintillator detector. Since this material has a low
atomic number Z, Compton scattering is predominant and only this distribution is seen in the response func-

tion

immediately destroys the ideal delta-function response. In a similar manner, those
events interacting via the pair production mechanism will also contribute a structure to
the function. One such total response function is sketched in Fig. 5.2. The observed
pulse height spectrum, therefore, simply reflects the different interactions which occur
in the detector volume. Since the relative intensity of each structure in the spectrum is
determined by the relative cross sections for each interaction mechanism, the response
function will also be different at different energies and for different detector media.

If the detector is now used to measure a spectrum of gamma rays, the observed
pulse height distribution will be a convolution of the gamma ray spectrum and the
detector response, i.e.,

PH(E)={S(E"\R(E, E")dE', 5.7

where R(E, E') is the response function at the incident energy E' and S(E") is the spec-
trum of gamma ray energies. To determine the gamma ray spectrum S(E’), from the
measured pulse height distribution then requires knowing R (E, E') in order to invert
(5.7). Here, of course, we see the utility of having R(E, E') = 6(E'— E)!

5.5 Response Time

A very important characteristic of a detector is its response time. This is the time which
the detector takes to form the signal after the arrival of the radiation. This is crucial to
the timing properties of the detector. For good timing, it is necessary for the signal to
be quickly formed into a sharp pulse with a rising flank as close to vertical as possible.
In this way a more precise moment in time is marked by the signal.

The duration of the signal is also of importance. During this period, a second event
cannot be accepted either because the detector is insensitive or because the second
signal will pile up on the first. This contributes to the dead time of the detector and
limits the count rate at which it can be operated. The effect of dead time is discussed in

Sect. 5.7.
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5.6 Detector Efficiency

Two types of efficiency are generally referred to when discussing radiation detection:
absolute efficiency and intrinsic detection efficiency. The absolute or total efficiency of
a detector is defined as that fraction of events emitted by the source which is actually
registered by the detector, i.e.,

events registered
box = ik . (5.8)
events emitted by source

This is a function of the detector geometry and the probability of an interaction in the
detector. As an example, consider a cylindrical detector with a point source at a
distance d on the detector axis as shown in Fig. 5.3. If the source emits isotropically,
then, the probability of the particle being emitted at an angle 8 is

P(0)dQ=dQ/4n. (5.9

The probability that a particle hitting the detector will have an interaction in the
detector is given by (2.7). Combining the two then yields

A6 = [1 —exp (Li)} @, (5.10)
A 4

where x is the path length in the detector and A is the mean free path for an interaction.
The total efficiency is then found by integrating (5.10) over the volume of the detector.

In many cases, however, the value of x does not vary too much over the detector or
the value of A is so small that the exponential can be considered as zero. The absolute
efficiency can then be factored into two parts: the intrinsic efficiency, &, and the geo-
metrical efficiency or acceptance, &eom. The total or absolute efficiency of the detector
is then given by the product

ot = Gint Sgeom - (5.11)

The intrinsic efficiency is that fraction of events actually hitting the detector which
is registered, i.e., :

events registered
b = B (5.12)

events impinging on detector )

This probability depends on the interaction cross sections of the incident radiation on
the detector medium. The intrinsic efficiency is thus a function of the type of radiation,

Detector

/(# S - * /A
Source' ]
d

Fig. 5.3. Calculating the detection efficiency of a
cylindrical detector for a point source




Il Pracownia Fizyczna, y4 Instytut Fizyki, Uniwersytet Jagiellonski

122 5. General Characteristics of Detectors

its energy and the detector material. For charged particles, the intrinsic efficiency is
generally good for most detectors, since it is rare for a charged particle no¢ to produce
some sort of ionization. For heavier particles, though, quenching effects may be pre-
sent in some materials which drain the ionization produced. The problem of efficiency
is generally more important for neutral particles as they must first interact to create
secondary charged particles. These interactions are much rarer in general, so that
capturing a good fraction of the incident neutral radiation is not always assured. The
dimensions of the detector become important as sufficient mass must be present in
order to provide a good probability of interaction.

The geometric efficiency, in contrast, is that fraction of the source radiation which
is geometrically intercepted by the detector. This, of course, depends entirely on the
geometrical configuration of the detector and source. The angular distribution of the
incident radiation must also be taken into account. For the cylindrical detector in Fig.
5.3, éyeom is simply the average solid angle fraction. For multidetector systems, where
coincidence requirements are imposed, however, the calculations can be somewhat
complicated and recourse to numerical simulation with Monte Carlo methods must be
made.

5.7 Dead Time

Related to the efficiency is the dead time of the detector. This is the finite time required -
by the detector to process an event which is usually related to the duration of the pulse
signal. Depending on the type, a detector may or may not remain sensitive to other
events during this period. If the detector is insensitive, any further events arriving dur-
ing this period are lost. If the detector retains its sensitivity, then, these events may pile-
up on the first resulting in a distortion of the signal and subsequent loss of information
from both events. These losses affect the observed count rates and distort the time
distribution between the arrival of events. In particular, events from a random source
will no longer have the Poissonian time distribution given by (4.60). To avoid large
dead time effects, the counting rate of the detector must be kept sufficiently low such
that the probability of a second event occurring during a dead time period is small. The
remaining effect can then be corrected.

When calculating the effects of dead time, the entire detection system must be taken
into account. Each element of a detector system has it own dead time and, indeed, it is
often the electronics which account for the larger part of the effect. Moreover, when
several elements have comparable dead times, combining the effects is also a difficult
task and a general method does not exist for solving such problems.

As an illustration let us analyze the effect on count rate due to the dead time of
a simple element in the system. Suppose the element has a dead time 7 and that 7 is con-
stant for all events. Two fundamental cases are usually distinguished: extendable or
non-extendable dead times. These are also referred to as the paralyzable or non-
paralyzable models. In the extendable case, the arrival of a second event during a dead
time period extends this period by adding on its dead time 7 starting from the moment
of its arrival. This is illustrated in Fig. 5.4. This occurs in elements which remain sensi-
tive during the dead time. In principle if the event rate is sufficiently high, events can
arrive such that their respective dead time periods all overlap. This produces a prolong-
ed period during which no event is accepted. The element is thus paralyzed. The non-
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Non -extendable dead time Fig. 5.4. Extendable (paralyzable) and non-
Events I T extendable (non-paralyzable) dead time models

Dead

e L] L JL_1

Extendable dead time

Events
T
Dead 1

time | | i
T

extendable case, in contrast, corresponds to a element which is insensitive during the
dead time period. The arrival of a second event during this period simply goes un-
noticed and after a time 7 the element becomes active again.

Let us consider the non-extendable case first. Suppose m is the true count rate and
the detector registers X counts in a time 7. Since each detected count »z engenders a dead
time 7, a total dead time k 7 is accumulated during the counting period 7. During this
dead period, a total of mk 7 counts is lost. The true number of counts is therefore

mT=k+mkrt. (5.13)

Solving for m in terms of k, we find

me_ KT (5.14)
1—(k/T)t

Thus (5.14) provides us with a formula for finding the true rate m from the observed

rate k/T.
The extendable case is somewhat more difficult. Here, one realizes that only those

counts which arrive at time intervals greater than 7 are recorded. As given by (4.60), the
distribution of time intervals between events decaying at a rate m, is

P(t)=mexp(—mt) . (5.15)

The probability that ¢> 7 is then

P(t>r)=mTexp(—mt)dt=exp(—mr) ; (5.16)

r

The number of counts observed in a time T, therefore, is just that fraction of the mT
true events whose arrival times satisfy this condition,

k=mTexp(—m7). (5.17)

To find the true value, m, (5.17) must be solved numerically. Figure 5.5 shows the be-
havior of (5.17). Note that the function first increases, goes through a maximum at
m = 1/7and then decreases once again. This means that for a given observed rate, k/T,
there are two corresponding solutions for m. Care should be taken, therefore, to distin-

guish between the two.
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Fig. 5.5. Numerical solution of equation (5.17) to determine
the true count rate in the extended dead time model. Note
there are two possible solutions

>

k/T, observed count rate

m, true rate

L= e —

—
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The above results are generally adequate for most practical problems, however,
they are only first order approximations. More rigorous treatments are given by Foglio
Parra and Mandelli Bettoni [5.2] and a general discussion of dead time problems by
Muller [5.3]. The case of a variable dead time is also treated by Libert [5.4].

Given the above results, the problem which often arises is to determine which class,
extendable or non-extendable, is applicable. Indeed, many detectors systems are com-
binations of both, having some elements which are extendable and others which are
not. And some may not be in either class. Moreover the dead time of the elements could
be variable depending on the count rate, the pulse shapes, etc. A solution often used is
to deliberately add in a blocking circuit element with a dead time larger than all other
elements into the system such that the detector system can be treated by one of the
fundamental models. This, of course, slows down the system but removes the uncer-
tainty in the dead-time model. This should be done quite early in the system, however,
in order to avoid pile-up problems later. See for example the Inhibit in Chap. 16.

5.7.1 Measuring Dead Time

The classical method of measuring dead time is the so-called two-source technique. In
this procedure, the count rates of two different sources are measured separately and
together. To illustrate the principle of the method, let us suppose 7, and n, are the true
count rates of the two sources and R;, R, and R;, are the rates observed for the
separate and combined sources. For simplicity also, let us assume that there is no
background. In the non-extended case, we then have the relations

n = L . ny, = L and
1—R1T 1—R2‘£' (5 18)
Ry '
ni+ny= .
1 —Rlzr
Eliminating the n’s, we have
Ry R, R, (5.19)

= +
]*‘Ru? 1*‘R]T 1—R21'

which yields the solution
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= RiR:—[RiRy(R12— Ry) Rip— Ry)I™”
RiR R,

(5.20)

While conceptually the double source method is quite simple, it is in practice, a cum-
bersome and time consuming method which yields results to no better than 5—10%
[5.3]. This can be seen already in (5.20) which shows T to be given by a difference
between two numbers. From the point of view of statistical errors (see Sect. 4.6.1), of
course, this is disadvantageous. Experimentally, care must also be taken to ensure the
same positioning for the sources when they are measured separately and together. Even
then, however, there may be scattering effects of one source on the other which may
modify the combined rates, etc.

A number of other methods have been proposed, however. One technique is to
replace one of the sources with a pulse generator [5.5] of frequency f<(37) ~'. If R, is
the observed rate of the source alone and R_ is the observed combined rate of the source
and generator, then it can be shown that the dead time in the non-extended case is

o 1-[R—R)/N
R, '

(5.21)

Equation (5.21) is only approximate, but it should give results to better than 1% as long
as the oscillator frequency condition stated above is met [5.3]. This method, of course,
avoids the problem of maintaining a fixed source geometry but it does require an
estimate of the dead time and a fast pulser to ensure the frequency condition above. A
more general formula valid at all frequencies has been worked out by Muller [5.6]
requiring, however, a long numerical calculation of a correction factor.

For an extended dead time, it can also be shown [5.3] that

(m+f—-mfr)exp(—mt)=R, (5.22)
where m is the true rate of the source. If (5.17) for the case of source alone is used, the
relation

Rc_ Rs

=(-mr7)exp(—m7) (5.23)

is found which can be solved for m 1. If m is known then, of course, t follows.

A very quick and accurate method which can be used for measuring the dead time
of the electronics system alone is to inject pulses from two oscillators [5.3] of frequency
fiand £, and to measure the mean frequency of the combined pulses, f.. For the non-
extended model, it can be shown then,

fim Si+fh—-2fifar for 0<1<T/2 (5.24)
/T for T/2<t<T

- where T is the period of the faster oscillator, i.e., the smaller of 1/f; and 1/f,. For the
extended model, we have similarly

fc= f1+f2—2f1f21' for O<t<T (5.25)
0 for >T.
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The expressions are thus identical if the frequency of the faster oscillator is chosen such
that f<(27) " !; the dead time, irrespective of the model, is then given by

2 RR,

_Im R{+R,—R, (5.26)

where Ry, R, and R, are the total measured counts for the two oscillators separately
and combined in a measurement period f,,. If f is chosen greater then (27) !, then a
determination of the model type can be made by comparing the results to the predic-
tions in (5.24) and (5.25).

When using this method, of course, it is important to assure that the form of the
pulses are close to those of true detector signals and that the frequencies of the oscil-
lators are stable. In such cases, the two-oscillator method can yield quick and accurate
results to a precision better than 103,




