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Abstract. Digital holography captures holograms by charge-coupled de-
vice or complementary metal-oxide semiconductor cameras, which have
a spatial resolution still not reaching that of silver-halide holofilms. Thus,
due to the sampling theorem, the angle between the reference and object
wave is limited. Only fields coming from small objects, objects far away,
or optically reduced fields can be recorded. Here we investigate optical
reduction by a system of lenses, and show that a system of two concave
lenses results in a drastic reduction of the object-target distance, while the
effect of using more lenses is insignificant. Experimental results obtained
with Fresnel and lensless Fourier-transform geometry are presented, and
implications on holographic interferometric metrology as well as on holo-
graphic 3-D television are given. C© 2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3524238]
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1 Introduction
Holography is a method for the capture and reconstruction
of 3-D optical wave fields, which has found numerous ap-
plications in metrology and display technology. It is used in
particle and flow detection,1–3 and holographic interferome-
try is applied for form and deformation measurement,4, 5 as
well as refractive index measurement.6, 7 It is a precise and
well established method for experimental stress analysis as
well as holographic nondestructive testing.8–10 On the other
hand, it is the most promising approach to 3-D TV, being the
only 3-D reconstruction method that displays the real 3-D
field, and not only giving the parallax effect, as stereoscopy
does.11, 12 Holographic recording onto high-resolution holo-
graphic plates and films has been almost totally replaced
today by digital holography, meaning recording of the holo-
gram by the target of a digital charge-coupled device (CCD)
or complementary metal-oxide semiconductor (CMOS) cam-
era without focusing optics, followed by numerical instead
of optical reconstruction.

Digital holography offers many advantages over classical
holography, as there is the avoidance of wet chemical pro-
cessing, no need for exact replacement of hologram plates,
unlimited reusability of targets, and direct numerical access
to amplitude and phase. The main drawback of digital holog-
raphy is the up-to-now limited resolution of the CCD/CMOS
targets compared to high-resolution holographic emulsions
on plates or sheets. Due to the sampling theorem, the angle
between object and reference wave remains limited, where
the maximum allowable angle depends on the pixel pitch of
the used target. However, it has been shown that the angular
spectrum can be reduced optically by employing a concave
lens,13 so that even the wave fields reflected from large scale
objects can be recorded by digital holography.

This concept is further elaborated in this work by using
systems of more than one lens. We show how the holographic
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arrangement is optimized with regard to the distance between
object surface and recording target. We also discuss what is
economically feasible and where the method is still limited.

2 Digital Holography
Let the array used for digital recording of the microinter-
ference pattern establishing the hologram have N×M light
sensitive pixels with pixel pitch �ξ and �η, which are the
distances between pixel centers in ξ and η directions. In most
cases we have N = M and �ξ = �η, which is assumed in
the following. Figure 1 shows schematically an arrangement
for recording a digital Fresnel hologram with a normally im-
pinging plane reference wave. Let θ be the angle between
the reference wave and the wave emitted from object point
P and hitting any hologram point H . Then the period p of
the interference pattern caused by this point at H is

p = λ

2 sin(θ/2)
. (1)

If the sampling theorem is fulfilled, then it is generally guar-
anteed that the hologram can be perfectly reconstructed from
its samples, meaning no significant information is lost by
sampling. However, in special cases with additional effort,
it is possible to recover the signal even for angle values be-
yond the Nyquist limits.14 The sampling theorem requires
sampling of the period p with more than two pixels, thus

p > 2�ξ. (2)

Since θ remains small, we can set sin(θ/2) = θ/2, and from
Eqs. (1) and (2) we obtain

θ <
λ

2�ξ
. (3)

As an example, this means for a pixel pitch �ξ = 3.45 μm
and λ = 0.532 μm, θ has to remain less than 4.4 deg.

The maximum allowed angle θ gives us the minimum
distance d, where the object, here assumed as a plane object,
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Fig. 1 Geometry for recording a digital Fresnel hologram.

can be placed. Assuming Fresnel geometry with the normally
impinging plane reference wave of Fig. 1, we have

tan θ =
dO
2 + N�ξ

2

d
, (4)

where dO is the maximum lateral object width. This θ is cal-
culated for the symmetric arrangement of object and target,
which gives the smallest θ for all arrangements as long as
N�ξ < dO . With Eq. (3) and assuming a small θ , we obtain

dO
2 + N�ξ

2

d
<

λ

2�ξ
, (5)

which can be solved for d by

d >
(dO + N�ξ )�ξ

λ
. (6)

As a rule of thumb, the distance between object and target
must obey d > dO�ξ/λ, which corresponds to the require-
ment that each object surface point fulfills the sampling the-
orem for at least half of the target points. Since these limits
are exactly valid only for the marginal points of the object,
the resulting loss in accuracy in the reconstructed wave file
in this case is neglectable.

A further problem in digital holography is the occu-
rance of the zero diffraction order, also known as the dc
term. Using Fresnel holography with a plane reference wave
as shown before, the dc term has a lateral extension of
[N 2�ξ 2/(dλ)] · �ξ of the total N · �ξ in each dimension of
the reconstructed wave field. This poses no problem as long as
we reconstruct the wave fields numerically, because there are
algorithms suppressing the dc term during reconstruction.15

But if one intends to reconstruct the wave fields optically
by feeding the digital holograms to a spatial light modulator
as in holographic TV, then the dc term plays a crucial role.
Therefore, one has to place the object in a way not to overlap
with the dc term. An elegant solution to this problem is to
use the geometry of lensless Fourier-transform holography.
Here a divergent reference wave with a source point in the
plane of the object surface is employed, leading to a much
smaller dc term in the reconstructed image, which in many
cases even collapses to a single pixel.16

Since the hologram is an intensity distribution described
only by real numbers, the reconstructed wave fields be-
sides the dc term consist of a direct and conjugate im-
age, the so-called twin images. While in Fresnel hologra-
phy one of them is sharp and the other is unsharp, in lensless
Fourier-transform holography both are sharp. No twin images

occur if we record the complex field in the hologram plane,
which can be performed by the phase shift methods. In tem-
poral phase shifting methods, several real holograms are
recorded consecutively with mutual constant phase shifts
added.17 The complex field then is calculated by solving
a system of equations for each pixel. In spatial phase shift
procedures, a linearly increasing spatial phase shift is added
in a single hologram, and reconstruction of the wave field
in the hologram plane is performed by Fourier-transform
evaluation.18, 19 Since phase shifting needs much more effort
and is more complicated, it is more costly and thus often
avoided. Fresnel holography conceptually requires the most
easy arrangement but produces a rather large dc term and
an unsharp twin image, which can spread partially over the
desired reconstructed image. Therefore, for holographic 3-D
television, lensless Fourier-transform holography is recom-
mended, while for metrologic problems, both methods are
applicable due to the possibility of numerical elimination of
twin image and dc term in digital Fresnel holography. Never-
theless, for any of these methods, the sampling theorem has
to be fulfilled, which can be done by restricting to objects
with small dimensions, or by placing the object far from the
recording array. But there is the third possibility of reducing
the angle θ , which can be performed by one or more lenses.
This is shown in the following sections.

3 Arrangement with Single Lens
The angle θ between the line connecting a point of the object
surface with a target point, and the direction of the refer-
ence wave in this target point fixes the spatial frequency of
the hologram microinterference pattern in the target point.
This spatial frequency can be reduced by introduction of
a lens, as depicted in Fig. 2, for the case of a concave
lens and a normally impinging plane reference wave. As
seen from the CCD, the wave field seems to come from
the small virtual image of the object, but not any more
directly from the object. Let the lateral extension of the
object be dO , then the corresponding extension of the vir-
tual image is dV . So we have a transversal magnification
MT = dV /dO = − f/(g − f ), which in fact is a reduction.
Here f is the (negative) focal length of the concave lens, and
g is the distance of the object’s surface from the lens. The lens
formula 1/ f = 1/g − 1/b gives the distance b of the virtual
image from the lens. Now given the desired angle θ , the focal
length of the lens f , the distance g between lens and object,
and the object’s extension dO , we can calculate the distance
a of the lens from the CCD. Having tan θ = dV /[2(a + b)],
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Fig. 2 Reduction of angular spectrum by single concave lens.
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dV = −dO f/(g − f ), and b = g f/( f − g), we obtain

a = −dO f

2(g − f ) tan θ
− g f

f − g
, (7)

or if λ and �ξ are given, with Eq. (3) it follows

a >
−dO f �ξ

(g − f )λ
− g f

f − g
. (8)

Equation (8) gives the lens-CCD distance a = a(g) as a func-
tion of g, the object-lens distance. So the total object-CCD
distance d is d = a + g. The minimum distance between ob-
ject and CCD now is obtained by minimizing a(g) + g. As an
example, let dO = 500 mm, �ξ = 3.45 μm, λ = 0.532 μm,
and N = 2452, then without a lens, a distance between ob-
ject and CCD of more than 3.2 m is required. With a concave
lens of f = −50 mm, this length can be reduced to a little
bit more than a + g = 0.7 m.

If we use a convex lens instead of the concave one,
Eq. (7) is replaced by

a = +dO f

2(g − f ) tan θ
− g f

f − g
. (9)

Due to the now positive sign of the focal length, generally
the total length of the holographic setup a + g is larger than
in the case of a concave lens.

4 Arrangement with Two Lenses
A typical arrangement employing two concave lenses with
focal lengths f1 and f2, respectively, is shown in Fig. 3.
The collimated reference wave here appears a little bit in-
clined, which is due to the off-axis geometry and results in a
nonoverlapping of the reconstructed image with the dc term.
g1 and g2 are the object distances, while b1 and b2 are the
image distances related to lenses 1 and 2, respectively. Its
operation can be described by lens 1 producing a first virtual
image of size dV 1 of the original object having size dO , while
lens 2 produces a further virtual image of size dV 2, now with
the first virtual image acting as its original. Let us call them
image 1 and image 2. If lens 1 has a distance from the object
surface of g1, then image 1 is the distance b1 in front of the
lens with

b1 = f1 g1

g1 − f1
. (10)

With the distance dL between the two lenses, image 1 is
g2 = b1 + dL apart from lens 2, so that the distance of virtual
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Fig. 3 System consisting of two concave lenses.

image 2 from lens 2 is calculated by

b2 = f2 g2

g2 − f2
= dL f2 + f1 f2g1/(g1 − f1)

dL − f2 + f1g1/(g1 − f1)

= dL f2(g1 − f1) + f1 f2g1

(dL − f2)(g1 − f1) + f1g1
. (11)

The resulting magnification MT is

MT = MT 1 MT 2 = dV 2

dO
= b1

g1

b2

g2

= f1 f2/(g1 − f1)

dL − f2 + f1g1/(g1 − f1)

= f1 f2

(dL − f2)(g1 − f1) + f1g1
. (12)

The distance a + b2 from image 2 to the CCD now depends
on the limiting angle θ , and a is given by

a = dO f1 f2

2 tan θ [(d − f2)(g1 − f1) + f1g1]
− b2, (13)

so that the total length of the arrangement is d = a + g1
+ dL , which can be made less than the total length a + g
using one lens, as is demonstrated in the next section.

5 Optimal Number of Lenses
In the same way as described in the preceding sections, the
distance between object surface and CCD can be calculated
for three, four, or even more lenses. However, the formulas
become increasingly clumsy. But this procedure allows us to
compute and compare the achievable reduction of the length
of the holographic arrangement. These simulations with up
to four lenses have been performed for a typical set of pa-
rameters, which correspond to the experiments executed in
this context. Without loss of generality, concave lenses of
three different focal lengths have been used, but for better
comparison of the results, only combinations of lenses with
identical focal lengths were utilized. The focal lengths are
−100, −50, and −25 mm. The pixel number is that of the
Pike F-505B camera of Allied Vision Technology (Stadtroda,
Germany), with N = 2452 pixels in the horizontal direction.
The pixel pitch is �ξ = 3.45 μm, and the wavelength of the
frequency-doubled Nd:YAG laser also used in the experi-
ments is λ = 0.532 μm. An object diameter of 180 mm is
chosen. Recognizing the fact, that the a calculated in Eq. (13)
is a(g1, dL ) for the two lenses, the object-CCD distance d is
also a function of g1 and dL in this case, so the minimiza-
tion is performed over varying g1 and dL . Furthermore, an
off-axis arrangement has been chosen to avoid mutual over-
lapping of the reconstructed plus and minus first diffraction
orders, as well as overlapping with the dc term.

The results of the calculations are depicted in Fig. 4. We
recognize the same trend for all focal lengths: a drastic de-
crease of object-CCD distance by introduction of the first
lens, and a reasonable further decrease by taking two lenses.
However, the effects of a third or even fourth lens are not sig-
nificant. Also, a larger number of lenses would complicate
the setup and could introduce additional aberrations. So as
a good compromise between the desire for a short arrange-
ment and a low number of components, the utilization of
two lenses is recommended. Furthermore, Fig. 4 indicates
that nearly the same effects can be obtained by one or more
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Fig. 4 Object-to-CCD distance versus number of lenses.

lenses with other focal lengths, e.g., the distance when using
two lenses with focal lengths −100 mm is the same result
as one lens with focal length −50 mm. Here the user can
choose, with the objective of minimizing spherical and other
aberrations due to the thicknesses of the lenses.

6 Experimental Results
The feasibility of the optical field reduction by two lenses has
been tested experimentally using an object height of 18 cm,
a statuette of the Bremen Town Musicians. This object was
recorded using the Fresnel-type holographic arrangement, as
shown in Fig. 5. By proper choice of the lenses L R1 and L R2
in the reference arm, Fresnel holography with a normally
impinging plane reference wave as well as lensless Fourier
transform holography can be used. The object is illuminated
simultaneously from two directions to prevent shadowing. A
photograph of the setup with two lenses having focal lengths
f1 = −75 mm and f2 = −50 mm is presented in Fig. 6. The
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Object 

Illumination wave 2 
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Fig. 5 Scheme of holographic arrangement.

Fig. 6 Two-lens arrangement.

intensity field numerically reconstructed from a digital holo-
gram recorded with Fresnel geometry is shown in Fig. 7. The
statuette reconstructed in the positive first diffraction order
is placed right of the rectangular dc term. The extremely un-
sharp negative first order has such low contrast that it is not
recognizable in the display.

The experiment has been repeated by using the lensless
Fourier-transform arrangement of Fig. 8. R is the virtual
source point of the now divergent reference wave. This R
is in the plane of the object, which is the small virtual ob-
ject seen from the CCD due to the two lenses. The intensity
distribution reconstructed from the hologram recorded with
this setup is displayed in Fig. 9. Here the positive as well as
the negative first order both are sharply reconstructed. The
statuette recorded and reconstructed holographically has a
height of 18 cm and a width of about 12 cm. Since both
diffraction orders must fit into the pixel array, the width
must fit two times into the field, together with a nonoverlap-
ping dc term. This demonstrates the advantages of lensless
Fourier-transform holography because of its small dc term.

Fig. 7 Reconstructed intensity; hologram recorded with Fresnel
geometry.
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Fig. 8 Two-lens arrangement for lensless Fourier-transform
holography.

The reconstructed wave field exhibits some geometrical dis-
tortions, which can be detected most clearly in the plane
pedestal that is imaged slightly curved. But the most remark-
able fact is that the distance between object and CCD is less
than 22 cm, while without the lenses more than 1.5 m would
be necessary.

7 Conclusions
We show theoretically and prove experimentally that the
small object angle dictated by the sampling theorem can
be obtained by using a single lens or a system of several
lenses. By a lens system, the angle between object wave and

reference wave in holography can be kept small, or in other
words, the spatial frequency spectrum in the hologram can
be reduced. If the principal criterion is a short distance be-
tween the object surface and recording CCD target, concave
lenses are recommended. Simulations show that more than
two lenses reduce the object-CCD distance only insignif-
icantly compared to a two-lens system. Two-lens systems
are therefore the best choice. For metrology applications,
where we deal with the numerically reconstructed intensity
and phase fields, Fresnel geometry is feasible, because the dc
term can be elimininated numerically. If, on the other hand,
the purpose is holographic 3-D television, when dealing with
an intensity hologram the dc term cannot be eliminated, so the
lensless Fourier-transform geometry is favored, since it has
the smallest dc term. So by using lensless Fourier transform
holography and an optical system, we reach an arrangement
with less than 25-cm distance between object and CCD. If
the CCD array has different pixel numbers in ξ and η direc-
tions, or if the extent of the object is different in x and y
directions, then there is an optimal exploitation of the pixel
array. Since both the first diffraction orders and the dc term
are reconstructed simultaneously, the object should be placed
in a way that in one direction the zero and both first orders
fit into the pixel array, while the other direction can be fully
occupied by the object height or width.

The experiments presented in this work exhibit clearly vis-
ible aberrations in the numerically reconstructed wave fields.
In future research work, these aberrations are to be mini-
mized by a combination of concave and convex lenses, or
they will be compensated by an analog optical lens system in
the optical reconstruction process in holographic 3-D TV. For
numerical reconstruction, furthermore, there exist effective
algorithms for computer-aided correction of these anamor-
phic images.20, 21 The proposed approach to reduce the object
angle is not a direct solution to the keyhole problem of digital

Fig. 9 Reconstructed intensity; hologram recorded with lensless Fourier-transform geometry.
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holography, which means that the object is seen from only a
short angle, like looking through a keyhole. But it paves the
way to design optical systems with a large-diameter front lens
near the object, thus allowing the object not only to be seen
from one direction, but simultaneously from a continuum of
angular directions, thus offering enhanced 3-D capability.
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