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Preface to the Second Edition

As we sat down to consider writing a new edition of Digital Holography, we, the
original authors (U. Schnars and W. Jüptner), asked ourselves if the field had
advanced sufficiently with enough new and novel developments to merit a second
edition. The answer was an overwhelming YES and came from seeing the profound
developments and scale of applications to which digital holography, and in the
wider context 3D imaging technologies in general, are now being routinely applied.
In the intervening years, the evolution of digital holography has been, both,
extensive and dramatic.

Some of the areas in which we have seen considerable advances and application
include computational wave field sensing and digital holographic microscopy, with
a huge number of papers being published in these and related fields. To reflect these
advances adequately in our book and to broaden its scope, we invited Claas Falldorf
(BIAS) and John Watson (University of Aberdeen) to join us as co-authors. Claas
works actively in wave field sensing using computational methods such as phase
retrieval or computational shear interferometry. John is an international expert in
digital holographic microscopy and, particularly, to underwater holography of
aquatic organisms and particles; and also 3DTV and related fields. Both are ideal
partners to support the approach and philosophy of the new edition.

Accordingly, this second edition has been significantly revised and enlarged. We
have extended the chapter on Digital Holographic Microscopy to incorporate new
sections on particle sizing, particle image velocimetry and underwater holography.
A new chapter now deals comprehensively and extensively with computational
wave field sensing. These techniques represent a fascinating alternative to standard
interferometry and Digital Holography. They enable wave field sensing without the
requirement of a particular reference wave, thus allowing the use of low brilliance
light sources and even liquid-crystal displays (LCD) for interferometric applica-
tions. We believe that, in the coming years, computational wave field sensing will
prove to be an excellent complement to Digital Holography to determine the full
complex amplitude of wave fields.

All the authors wish to thank colleagues past and present (too numerous to
mention) with whom they have worked over the years. As with the first edition,

Life always bursts the boundaries of formulas

Antoine de Saint Exupéry
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several pictures and figures in this book originate from common publications with
other colleagues and we thank them for permission to describe their work and to use
their pictures. All of our co-workers are gratefully acknowledged.

Bremen, May 2014 Ulf Schnars
Aberdeen Claas Falldorf

John Watson
Werner Jüptner
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Preface to the First Edition

An old dream of mankind and a sign of culture is the conservation of moments by
taking an image of the world around. Pictures accompany the development of
mankind. However, a picture is the two-dimensional projection of the three-
dimensional world. The perspective—recognized in Europe in the Middle Ages—
was a first approach to overcome the difficulties of imaging close to reality. It took
up to the twentieth century to develop a real three-dimensional imaging: Gabor
invented holography in 1948. Yet still one thing was missing: the phase of the
object wave could be reconstructed optically but not be measured directly. The last
huge step to the complete access of the object wave was Digital Holography. By
Digital Holography the intensity and the phase of electromagnetic wave fields can
be measured, stored, transmitted, applied to simulations and manipulated in the
computer: An exciting new tool for the handling of light.

We started our work in the field of Digital Holography in 1990. Our motivation
mainly came from Holographic Interferometry, a method used with success for
precise measurement of deformation and shape of opaque bodies or refractive index
variations within transparent media. A major drawback of classical HI using pho-
tographic plates was the costly process of film development. Even thermoplastic
films used as recording medium did not solve the hologram development problem
successfully. On the other hand the Electronic Speckle Pattern Interferometry
(ESPI) and its derivate digital shearography reached a degree mature for applica-
tions in industry. Yet, with these speckle techniques the recorded images are only
correlated and not reconstructed as for HI. Characteristic features of holography like
the possibility to refocus on other object planes in the reconstruction process are not
possible with speckle metrology.

Our idea was to transfer all methods of classical HI using photographic plates to
Digital Holography. Surprisingly, we discovered that Digital Holography offers
more possibilities than classical HI: The wavefronts can be manipulated in the
numerical reconstruction process, enabling operations not possible in optical
holography. Especially the interference phase can be calculated directly from the
holograms, without evaluation of an interference pattern.

Sag’ ich zum Augenblicke verweile doch, Du bist
so schön

J.W.v. Goethe, “Faust”
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The efficiency of Digital Holography depends strongly on the resolution of the
electronic target used to record the holograms. When we made our first experiments
in the 1990s of the last century, Charged Coupled Devices began to replace ana-
logue sensors in cameras. The resolution of commercially available cameras was
quite low, about some hundred pixels per line, and the output signal of cameras
already equipped with CCDs was still analogue. In those days, digital sampling of
camera images and running of routines for numerical hologram reconstruction was
only possible on special digital image processing hardware and not, as today, on
ordinary PCs. The reconstruction of a hologram digitized with 512 × 512 pixels
took about half an hour in 1991 on a Digital Image Processing unit developed at
BIAS especially for optical metrology purposes. Nevertheless we made our first
experiments with these types of cameras. Today, numerical reconstruction of
holograms with 1 million pixel is possible nearly in real time on state-of-the-art
PCs.

Then, fully digital CCD cameras with 1 million pixels and smaller pixels than
those of the previous camera generation emerged on the market. These cameras
showed better performance and first applications in optical metrology became
possible. Today, digital CCD cameras with 4 million pixels are standard.

The tremendous development in opto-electronics and in data processing pushed
Digital Holography to new perspectives: It is applied with success in optical
deformation and strain analysis, shape measurement, microscopy and for investi-
gations of flows in liquids and gases. In this book we make the trial to describe the
principles of this method and to report on the various applications. We took pains to
prepare the manuscript carefully and to avoid mistakes. However, we are not
perfect. Comments, suggestions for improvements or corrections are therefore
welcome and will be considered in potential further editions.

Some pictures in this book originate from common publications with other
co-authors. All of our co-workers, especially W. Osten, Th. Kreis, D. Holstein,
S. Seebacher, H.-J. Hartmann and V. Kebbel are gratefully acknowledged.
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Chapter 1
Introduction

The recording and storage of full-parallax 3D images was and is a recurring goal of
science and engineering since the first photographs were made. To accomplish this,
the whole (“holos” in Greek) optical information emanating from a source needs to
be written (“graphein” in Greek), recorded or captured on a sensing device for later
recreation or reconstruction of the original object. This is the technique we now
know as holography.

The history of holography started in principle when Lord Rayleigh experi-
mentally created a Fresnel lens [268] and showed the generation of an interference
pattern by the superposition of a spherical wave with a planar wave. In holography
the planar wave is regarded as the reference wave and the spherical wave represents
the object. The Fresnel lens in this sense can be regarded as the hologram of a point
source. However, it was Denis Gabor who recognized that the same procedure
carried out over a number of point’s leads to the ability to optically reconstruct their
position in space. Consequently, he coined the name “holography” since he was
able to reconstruct the amplitude and phase of a wave [68–70].

A holographically stored image or hologram in the classical sense is a photo-
graphically, or otherwise, recorded interference pattern between a wave field
scattered from an object and a coherent background denoted as the reference wave.
A hologram is usually recorded on a flat two-dimensional surface, but contains the
entire information about the three-dimensional wave field. This information is
encoded in the form of interference fringes, usually not visible to the human eye
due to their high spatial frequencies. The object wave can be recovered by illu-
minating the hologram with the original reference wave. This reconstructed wave is
optically indistinguishable from the original object wave by passive means. An
observer sees a three-dimensional image with all effects of perspective, parallax and
depth-of-focus.

In his original set-up, Gabor illuminated the hologram with a parallel beam of
light incident on a predominantly transparent object. The axes of both the object
wave and the reference wave were parallel. The reconstruction of this hologram
results in a real image superimposed on the undiffracted part of the reconstruction
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wave and a so called ‘twin image’ (or virtual image) lying on the same optical axis,
i.e. an in-line hologram. Significant improvements of this in-line geometry were
proposed by Leith and Upatnieks [141, 142], who introduced an off-axis reference
wave at an oblique angle; this wave does not pass through the object. This approach
spatially separates the two images and the reconstruction wave and allows the
capture of opaque objects.

One early application of classical holography is Holographic Interferometry
(HI), developed in the late 1960s by Stetson, Powell [190, 222] and others. HI made
it possible to map the displacements of rough surfaces with an accuracy of a
fraction of a micrometer. It also enabled interferometric comparisons of stored wave
fronts existing at different times.

The development of computer technology allowed transferring either the
recording process or the reconstruction process into the computer. The first
approach led to Computer Generated Holography (CGH), which artificially gen-
erates holograms by numerical methods followed by their optical reconstruction.
This technique is not considered here and the interested reader is referred to the
literature; see e.g. Lee [140], Bryngdahl and Wyrowski [20] or Schreier [204].

Numerical hologram reconstruction was initiated by Goodman and Lawrence
[74] and Yaroslavskii et al. [132]. They sampled optically enlarged parts of in-line
and Fourier holograms recorded on a photographic plate. These digitized conven-
tional holograms were reconstructed numerically. Onural and Scott [146, 167, 168]
improved the reconstruction algorithm and applied this method to particle mea-
surement. Haddad et al. described a holographic microscope based on numerical
reconstruction of Fourier holograms [78].

A big step forward in the 1990s was the development of direct recording of
Fresnel holograms with Charged Coupled Devices (CCD’s) by Schnars and Jüptner
[197, 198]. This method enabled full digital recording and processing of holograms,
without any photographic recording as intermediate step. The name which has been
originally proposed for this technique was ‘direct holography’ [197], emphasizing
the direct way from optical recording to numerical processing. Later on the term
Digital Holography has been accepted in the optical metrology community for this
method. Although this name is sometimes also used for Computer Generated
Holography, the term Digital Holography is used within the scope of this book as a
designation for digital recording and numerical reconstruction of holograms.

The dramatic developments in optics, electronics and computing widened the
possibilities to capture, by computer means, phase information as well as amplitude.
Computational wave front sensing [57] liberates the measurement procedures from
a number of restrictions concerning coherence of the light or environmental
requirements. It was shown that in some cases the light generated by the display of
a smartphone has sufficient coherence to enable the recording of holograms [56].
Even the twin-image problem of in-line holography can be solved when phase
shifted holograms are recorded according to Yamaguchi [255].

Schnars and Jüptner applied DH to interferometry and demonstrated that digital
hologram reconstruction offers much more possibilities than conventional (optical)
processing: The phase of the stored light waves can be calculated directly from
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digital holograms, without the need for generating phase shifted interferograms
[195, 196], see example in Fig. 1.1. Other methods of optical metrology, such as
shearography or speckle photography, can be derived numerically from digital
holograms [199]. Using mathematical reconstruction, the choice of interferometric
technique (hologram interferometry, shearography or other) can be left until after
hologram recording.

The use of electronic devices such as CCDs to record interferograms was already
established in Electronic Speckle Pattern Interferometry (ESPI, also named
TV-holography). Proposed independently by Butters and Leendertz [23], Macovski
et al. [150] and Schwomma [205], two speckle interferograms are recorded in
different states of the object under investigation. The speckle patterns are subtracted
electronically. The resulting fringe pattern has some similarities to that of con-
ventional or digital HI. Digital Holographic Interferometry (DHI) and ESPI are
competing methods: image subtraction in ESPI is easier than the numerical
reconstruction of DHI, but the information content of digital holograms is higher.
ESPI and other methods of speckle metrology are also discussed in this book in
order to compare them with Digital Holographic Interferometry.

The main disadvantage of ESPI is the loss of phase information of the original
wave in the correlation process [46, 147, 148]. The interference phase has to be
recovered with phase shifting methods [35, 223, 224]. However, all the information
can be reconstructed by evaluating phase shifted shearograms without the ESPI
approach [57] leading to a wave sensing method with low demands on the
coherence and the environmental requirements.

Since its inception Digital Holography has been extended, improved and applied
to several measurement tasks. Some of these advances include:

Fig. 1.1 Digital holography. Left photograph of a holographic reconstruction of a chess piece.
Middle intensity reconstruction from a digital hologram. Right interference phase image after a
thermal load is applied
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• improvements of the experimental techniques and of the reconstruction algo-
rithm [37, 39, 40, 75, 113, 122, 123, 126, 136, 182, 184, 203],

• applications in deformation analysis and shape measurement [34, 119, 171, 181,
200, 206, 246],

• the development of phase shifting digital holography [47, 103, 137, 255–258,
264],

• the development of Digital Holographic Microscopy [38, 43, 48, 94, 114, 183,
235–237, 253]

• applications in particle tracking and sizing and underwater holography [5, 6, 85,
127, 176, 214, 227],

• measurement of refractive index distributions within transparent media due to
temperature or concentration variations [105, 106, 177, 252],

• applications in encrypting of information [95, 135, 231, 232],
• the development of digital light-in-flight holography and other short-coherence-

length applications [25, 100, 162–164, 179, 189],
• the development of methods to reconstruct the three-dimensional object struc-

ture from digital holograms [63, 64, 96, 154, 233, 263]
• the development of comparative Digital Holography [173, 174]

A number of alternative concepts for wavefield sensing are based on compu-
tational methods. Here, in contrast to Digital Holography, determination of the
complex amplitude of a wave field is treated as an inverse problem. The recorded
intensities are interpreted as an effect which has been caused by an unknown
wavefield that has undergone various manipulations. Examples include intensities
corresponding to different propagation states or superposition of a wavefield with a
shifted (or propagated) copy of itself. The great benefit is that no particular refer-
ence wave is required to measure the complex amplitude. In many situations, this
makes computational methods not only more robust and flexible than Digital
Holography but also enables application to wave fields with low spatial and/or
temporal coherence. However, solving the inverse problem requires application of
sophisticated numerical methods. In most cases there is no way to directly track
back to the complex amplitude from the recorded intensities alone. It is also not
possible to record on film material in order to optically reconstruct the investigated
wave field. The evaluation procedure can therefore be regarded as an integral part of
the measurement process.

As an introduction to the field, we will review the three methods of phase
retrieval [71, 193, 260], shear interferometry [55–57] and Shack-Hartmann wave-
field sensing in Chap. 7, which have been constantly developed since the early
1970s.

4 1 Introduction
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Chapter 2
Fundamental Principles of Holography

2.1 Light Waves

The behaviour of light can be modelled either as a propagating electromagnetic
(e-m) wave or as a stream of massless particles known as photons. Although the
models are seemingly contradictory both are necessary to fully describe the full
gamut of light phenomena. Whichever model is most appropriate depends on the
phenomenon to be described or the experiment under investigation. For example,
interaction of light with the atomic structure of matter is best described by the
photon model: the theory of photon behaviour and its interactions is known as
quantum optics. The phenomenon of refraction, diffraction and interference, how-
ever, are best described in terms of the wave model i.e. classical electromagnetism.

Interference and diffraction form the basis of holography An e-m wave is
described in terms of the propagation through space of mutually perpendicular
electric and magnetic fields. These fields oscillate in a plane that is perpendicular to
the direction of travel i.e. they are described as transverse waves, as depicted in
Fig. 2.1. Light waves can be described either by the electrical or by the magnetic
field, but in optics convention is to describe the e-m wave in terms of the electric
vector.

Light propagation is described by the wave equation, which follows from
Maxwell’s equations. The wave equation in a vacuum is

r2~E � 1
c2

o2~E
ot2

¼ 0 ð2:1Þ

Here ~E is the electric field and r2 is the Laplace operator defined as

r2 ¼ o2

ox2
þ o2

oy2
þ o2

oz2
ð2:2Þ
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and c is the speed of light in vacuum:

c ¼ 2:9979� 108 m/s ð2:3Þ

The electrical field ~E is a vector quantity and can vibrate in any direction
perpendicular to the direction of propagation. However, in many applications the
wave vibrates only in a single plane. Such light is called linear polarized light. In
this case it is sufficient to consider the scalar wave equation

r2E � 1
c2

o2E
ot2

¼ 0 ð2:4Þ

It can be easily verified that a linearly polarized, harmonic plane wave with
amplitude

E x; y; z; tð Þ ¼ a cos xt �~k~r � u0

� �
ð2:5Þ

is a solution of the above wave equation.
E(x,y,z,t) is the modulus of the electrical field vector at the point with spatial

vector~r ¼ ðx; y; zÞ at the time t. The quantity a is the amplitude of the wave. The
wave vector ~k describes the propagation direction of the wave:

~k ¼ k~n ð2:6Þ

~n is a unit vector in the propagation direction. Points of equal phase are located on
parallel planes that are perpendicular to the propagation direction. The modulus of~k
is the wave number and is described by

~k
��� ��� � k ¼ 2p

k
ð2:7Þ

The angular frequency ω corresponds to the frequency f of the light wave by

x ¼ 2pf ð2:8Þ

Frequency f and wavelength λ are related through the speed of light c:

Fig. 2.1 Electromagnetic wave propagating in z-direction
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c ¼ kf ð2:9Þ

The spatially varying term

u ¼ �~k~r � u0 ð2:10Þ

is the phase, with phase constant u0. It has to be pointed out that this definition is
not standardized. Some authors designate the entire argument of the cosine func-
tion, xt �~k~r � u0, as phase. The definition Eq. (2.10) is favourable to describe the
holographic process and therefore used in this book.

The vacuum wavelengths of visible light are in the range of 400 nm (violet) to
780 nm (deep red). The corresponding frequency range is 7:5� 1014 Hz to
3:8� 1014 Hz. Light sensors such as the human eye, photodiodes, photographic
film or CCD’s are not able to detect such high frequencies due to technical and
physical reasons. The only directly measurable quantity is the intensity. It is pro-
portional to the time average of the square of the electrical field:

I ¼ e0c E2� �
t¼ e0c lim

T!1
1
2T

ZT
�T

E2dt ð2:11Þ

E2
� �

t denotes the time average over many light periods. The constant factor e0c
results if the intensity is formally derived from the Maxwell equations. The constant
e0 is the vacuum permittivity. Note: we are using the term intensity here. In pho-
tometry and radiometry intensity has a different meaning (radiant power per solid
angle, unit W sr�1).

For a plane wave Eq. (2.5) has to be inserted:

I ¼ e0ca2 cos2 xt �~k~r � u0

� �D E
t
¼ 1

2
e0ca2 ð2:12Þ

According to Eq. (2.12) the intensity is proportional to the square of the
amplitude.

The expression (2.5) can be written in complex form as

E x; y; z; tð Þ ¼ aRe exp i xt �~k~r � u0

� �� �n o
ð2:13Þ

where ‘Re’ denotes the real part of the complex function. For computations the real
part ‘Re’ can be omitted (in accordance with the superposition principle). However,
only the real part represents the physical wave:

E x;y;z;tð Þ ¼ a exp i xt �~k~r � u0

� �� �
ð2:14Þ
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One advantage of the complex representation is that the spatial and temporal
parts factorize and Eq. (2.14) can be written as:

E x;y;z;tð Þ ¼ a exp iuð Þ exp ixtð Þ ð2:15Þ

In many calculations of optics only the spatial distribution of the wave is of
interest. In this case only the spatial part of the electrical field, its complex
amplitude, need be considered:

A x;y;zð Þ ¼ a exp iuð Þ ð2:16Þ

Equations (2.15) and (2.16) are not just valid for plane waves, but apply in
general to three-dimensional waves whose amplitude, a, and phase, φ, are functions
of x,y and z.

In complex notation the intensity is now simply calculated by taking the square
of the modulus of the complex amplitude

I ¼ 1
2
e0c Aj j2¼ 1

2
e0cA

�A ¼ 1
2
e0ca

2 ð2:17Þ

where * denotes complex conjugation. In many practical calculations where the
absolute value of I is not of interest the factor 1

2 e0c can be neglected, and the

intensity simplifies to I ¼ Aj j2.

2.2 Interference

The superposition of two or more waves in space is named interference. If each single
wave described by ~Eið~r; tÞ is a solution of the wave equation, the superposition

~E ~r; tð Þ ¼
X
i

~Ei ~r; tð Þ i ¼ 1; 2; . . . ð2:18Þ

is also a solution. This is because the wave equation is a linear differential equation.
In the following, interference of two monochromatic waves with equal fre-

quencies and wavelengths is considered. The waves shall have the same polariza-
tion directions, i.e. scalar formalism can be used. The complex amplitudes of the
respective waves are represented by;

A1 x;y;zð Þ ¼ a1 exp iu1ð Þ ð2:19Þ

A2 x;y;zð Þ ¼ a2 exp iu2ð Þ ð2:20Þ

The resulting complex amplitude is then calculated by the sum of the individual
amplitudes:
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A ¼ A1 þ A2 ð2:21Þ

According to Eq. (2.17) the intensity can be written as

I ¼ A1 þ A2j j2¼ A1 þ A2ð Þ A1 þ A2ð Þ�
¼ a21 þ a22 þ 2a1a2 cos u1 � u2ð Þ
¼ I1 þ I2 þ 2

ffiffiffiffiffiffiffi
I1I2

p
cosDu ð2:22Þ

where I1, I2 are the individual intensities and the phase difference between the two
waves is

Du ¼ u1 � u2 ð2:23Þ

The resulting intensity is the sum of the individual intensities plus the inter-
ference term 2

ffiffiffiffiffiffiffi
I1I2

p
cosDu, which depends on the phase difference between the

waves. The intensity reaches its maximum when the phase difference between
consecutive points is a multiple of 2π

Du ¼ 2np for n ¼ 0; 1; 2; . . . ð2:24Þ

This is known as constructive interference. The intensity reaches its minimum
when

Du ¼ 2nþ 1ð Þp for n ¼ 0; 1; 2; . . . ð2:25Þ

And this is known as destructive interference. The integer n is the interference
order. An interference pattern therefore consists of a series of dark and light lines,
“fringes”, across the field-of-view as a result of this constructive and destructive
interference. Scalar theory can also be applied to waves with different polarization
directions, if the components of the electric field vector are considered.

The superposition of two plane waves which intersect at an angle θ with respect
to each other results in an interference pattern with equidistant spacing, as seen in
Fig. 2.2. The fringe spacing d is the distance from one interference maximum to the
next and can be calculated from geometrical considerations. Figure 2.2 shows that

sin h1 ¼ Dl1
d

; sin h2 ¼ Dl2
d

ð2:26Þ

The quantities h1 and h2 are the angles between the propagation directions of the
wavefronts and the vertical direction of the screen. The length Dl2 is the path
difference between wavefront W2 and wavefront W1 at the position of the inter-
ference maximum P1 (W2 has to travel a longer path to P1 than W1). At the
neighboring maximum P2 the conditions are exchanged: now W1 has to travel a
longer path; the path difference of W2 with respect to W1 is �Dl1. The variation

2.2 Interference 9



between the path differences at neighboring maxima is therefore Dl1 þ Dl2. This
difference is equal to one wavelength. Thus the interference condition is:

Dl1 þ Dl2 ¼ k ð2:27Þ

Combining Eq. (2.26) with Eq. (2.27) gives the fringe spacing as:

d ¼ k
sin h1 þ sin h2

¼ k

2 sin h1þh2
2 cos h1�h2

2

ð2:28Þ

The approximation cosðh1 � h2Þ=2 � 1 and h ¼ h1 þ h2 can be applied to give

d ¼ k

2 sin h
2

ð2:29Þ

Instead of the fringe spacing d, the fringe pattern can also be described in terms
of the spatial frequency f, which is just the reciprocal of d, i.e.

f ¼ d�1 ¼ 2
k
sin

h
2

ð2:30Þ

2.3 Coherence

2.3.1 General

Generally the resulting intensity of two different sources, e.g. two electric light
bulbs directed on a screen, is additive. Instead of dark and bright fringes as expected
by Eq. (2.22) only a uniform brightness according to the sum of the individual
intensities is visible.

P1 P2

W1

W2

l
Δ

Δ

θ
θ

1

l
2

d

1
2

Fig. 2.2 Interference of two plane waves W1 and W2. The marginal rays are sketched. θ1 is the
angle between W1 and the vertical, θ2 is the angle between W2 and the vertical. P1 and P2 are
adjacent interference maxima

10 2 Fundamental Principles of Holography



In order to observe interference fringes, the phases of the individual waves have
to be correlated. The ability of light to form interference patterns is called coherence
and is investigated in this chapter. The two aspects of coherence are temporal and
spatial coherence. Temporal coherence depends on the correlation of a wave with
itself at different instants in time [121], whereas spatial coherence is based on the
mutual correlation of different parts of the same wavefield in space.

2.3.2 Temporal Coherence

The phenomenon of interference between two coherent beams of light can be
described in terms of a two beam interferometer such as the Michelson-interfer-
ometer, as shown in Fig. 2.3. Light emitted by the source S is split into two waves
of reduced amplitude by the beam splitter BS. These waves travel to the mirrors M1
and M2 respectively, and are reflected back into their incident directions. After
passing the beam splitter again they are superimposed at a screen. Usually the
superimposed waves are not exactly parallel, but are incident at a small angle. As a
result a two-dimensional interference pattern becomes visible.

The optical path length from BS to M1 and back to BS is s1, and the optical path
length from BS to M2 and back to BS is s2. Experiments show that interference can
only occur if the optical path difference s1 � s2 does not exceed a certain length
L. If the optical path difference exceeds this limit, the interference fringes vanish
and just a uniform brightness is visible on the screen. The qualitative explanation
for this phenomenon is that interference fringes can only develop if the superim-
posed waves have a well defined (constant) phase relationship between them. The
phase difference between waves emitted by different sources varies randomly and
thus the waves do not interfere. The atoms within the light source emit wave trains
with a finite length L. If the optical path difference exceeds L, the recombined
waves do not overlap after passing the different ways and interference is not
observed.

Light
Source

BS

Screen

M1

M2

S1/2

S2/2

Fig. 2.3 Michelson’s
interferometer
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The critical path length difference or, equivalently, the length of a wave train is
the coherence length L of the wave. The corresponding time over which the wave
train is emitted is its coherence time,

s ¼ L
c

ð2:31Þ

According to the laws of Fourier analysis a wave train with finite length L cor-
responds to light with finite spectral width Δf, where

L ¼ c
Df

ð2:32Þ

The coherence length is therefore a measure for the spectral linewidth of the
source at a specific frequency, f. Light with a long coherence length accordingly has
a correspondingly small linewidth and is therefore highly monochromatic.

Typical coherence lengths of light radiated from thermal sources, e.g. conven-
tional electric light bulbs, are in the range of some micrometers. That means,
interference can only be observed if the arms of the interferometer have nearly
equal path lengths. On the other hand lasers have coherence lengths from a few
millimetres (e.g. a multi-mode diode laser) to several 100 m (e.g. a stabilized single
mode Nd:YAG-laser) up to several hundred kilometres for specially stabilized gas
lasers used for research purposes.

The fringe visibility

V ¼ Imax � Imin

Imax þ Imin

ð2:33Þ

is a measure of the contrast of a particular interference pattern, where Imax and Imin

are two neighbouring intensity maxima and minima. They are calculated by
inserting Du ¼ 0 and Du ¼ p respectively into Eq. (2.22). In the ideal case of
infinite coherence length the visibility is given by,

V ¼ 2
ffiffiffiffiffiffiffi
I1I2

p
I1 þ I2

ð2:34Þ

To consider the effect of finite coherence length the complex self-coherence
function Γ(τ) is introduced:

C sð Þ ¼ E t þ sð ÞE� tð Þh i

¼ lim
T!1

1
2T

ZT
�T

E t þ sð ÞE� tð Þdt ð2:35Þ
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E(t) is the electrical field (to be precise: the complex analytical signal) of one
interfering wave while E(t + τ) is the electrical field of the other wave. The latter is
delayed in time by τ. Equation (2.35) represents the autocorrelation of the corre-
sponding electric field amplitudes. The quantity

c sð Þ ¼ C sð Þ
C 0ð Þ ð2:36Þ

is the normalized self-coherence function; the absolute value of γ defines the degree
of coherence.

With finite coherence length the interference equation (2.22) has to be replaced
by

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cj j cosDu ð2:37Þ

The maximum and minimum intensity are now calculated by

Imax ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cj j

Imin ¼ I1 þ I2 � 2
ffiffiffiffiffiffiffi
I1I2

p
cj j ð2:38Þ

Inserting these quantities into Eq. (2.33) yields

V ¼ 2
ffiffiffiffiffiffiffi
I1I2

p
I1 þ I2

cj j ð2:39Þ

For two partial waves with the same intensity, I1 ¼ I2 Eq. (2.39) becomes

V ¼ cj j ð2:40Þ

cj j is equal to the visibility and is therefore a measure of the ability of the two wave
fields to interfere. When cj j ¼ 1 we have ideally monochromatic light or, likewise,
light with infinite coherence length; when cj j ¼ 0 for the light is completely
incoherent. Partially coherent light therefore lies in the range 0\ cj j\1:

2.3.3 Spatial Coherence

Spatial coherence describes the mutual correlation of spatially separated parts of the
same wavefield. This property can be measured using, for example, a Young’s
interferometer, Fig. 2.4. Here, an extended light source emits light from a large
number of elementary point sources. An aperture with two transparent holes is
mounted between the light source and the screen. The aim of the experiment is to
determine the mutual correlation (degree of coherence) of the light incident on the
aperture at the spatially separated positions given by the holes. If the light at these
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positions is correlated, interference fringes are visible on the screen. In the fol-
lowing we will discuss the geometrical relations under which interference can be
observed for the simple case of an extended light source. The fringes result from the
different light paths traversed to the screen, either via the upper or via the lower hole
in the aperture [250]. The interference pattern vanishes if the distance between the
holes a exceeds the critical limit ak. This limit is named coherence distance. The
phenomenon is not related to the spectral width of the light source, but is due to the
waves emitted by different points of the extended light source being superimposed
on the screen. It may happen that a particular source point generates an interference
maximum at a certain point on the screen, while another source point generates a
minimum at the same point. This occurs because the optical path difference is
different for each source point. In general the contributions from all source points
cancel and the contrast vanishes. This cancellation is avoided if the following
condition is fulfilled for every point of the light source:

r2 � r1\
k
2

ð2:41Þ

This condition is fulfilled if it is restricted to rays emanating from the edges of
the light source. The following relations are valid for points at the edges:

r21 ¼ R2 þ a� h
2

� 	2

; r22 ¼ R2 þ aþ h
2

� 	2

ð2:42Þ

where h is the width of the light source. Applying the assumptions a � R and
h � R gives,

r2 � r1 � ah
2R

ð2:43Þ

Combining Eqs. (2.41) and (2.43) leads to the following expression:

ah
2R

\
k
2

ð2:44Þ

212
λ<−rr

a

R

h

r1

r2

Screen

Light-
source

Fig. 2.4 Young’s
interferometer
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The coherence distance ak is therefore given from,

akh
2R

¼ k
2

ð2:45Þ

In contrast to temporal coherence, the spatial coherence depends not only on
properties of the light source, but also on the geometry of the interferometer. A light
source may initially generate interference, which means Eq. (2.44) is fulfilled, but if
the distance between the holes increases or the distance between the light source
and the aperture decreases, Eq. (2.44) is violated and the interference vanishes.

To consider spatial coherence the autocorrelation function defined in Eq. (2.35)
is extended to,

C ~r1;~r2; sð Þ ¼ E ~r1; t þ sð ÞE� ~r2; tð Þh i

¼ lim
T!1

1
2T

ZT
�T

E ~r1; t þ sð ÞE� ~r2; tð Þdt ð2:46Þ

where ~r1, ~r2 are the spatial vectors of the holes in the aperture of the Young
interferometer. This cross correlation function is the mutual coherence function.
The normalized function is

c ~r1;~r2; sð Þ ¼ C ~r1;~r2; sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C ~r1;~r1; 0ð ÞC ~r2;~r2; 0ð Þp ð2:47Þ

where C ~r1;~r1; 0ð Þ is the intensity at ~r1 and C ~r2;~r2; 0ð Þ is the intensity at ~r2.
Equation (2.47) describes the degree of correlation between the lightfield at~r1 at a
time t þ s with the light field at~r2 at time t. The special function c ~r1;~r2; s ¼ 0ð Þ is a
measure for the correlation between the field amplitudes at ~r1 and~r2 at the same
time and is defined as the complex degree of coherence. The modulus of the mutual
coherence function c ~r1;~r2; sð Þj j is measured with the Young interferometer.

2.4 Diffraction

Consider a light wave incident on an obstacle such as an opaque screen with some
holes, or vice versa, a transparent medium with opaque obstructions. From geo-
metrical optics it is known that a shadow is visible on a screen behind the obstacle.
On closer examination, we see that if the dimensions of the obstacle (e.g. diameter
of holes in an opaque screen or size of opaque particles in a transparent volume) are
of the order of the wavelength of the incident light, then the light distribution is not
sharply bounded, but forms a pattern of dark and bright regions. This is the phe-
nomenon diffraction, see Fig. 2.5.
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Diffraction can be explained qualitatively with the Huygens’ principle: Every
point of a wave front can be considered as a source point for secondary spherical
waves. The wave field at any other place is the coherent superposition of these
secondary waves.

Huygens’ principle is illustrated in Fig. 2.6.
The Fresnel-Kirchhoff integral describes diffraction quantitatively [116] as,

C n0; g0ð Þ ¼ i
k

Z1
�1

Z1
�1

A x; yð Þ exp �i 2pk q
0
 �

q0
Qdxdy ð2:48Þ

Fig. 2.5 Diffraction of a
plane wave at an opaque
screen with a small hole

Primary

wavefront

Secondary
wavelets

Envelope
(new wavefront)

Fig. 2.6 Huygens’ principle
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with

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� n0ð Þ2þ y� g0ð Þ2þd2

q
ð2:49Þ

and

Q ¼ 1
2

cos hþ cos h0ð Þ ð2:50Þ

A(x, y) is the complex amplitude in the plane of the diffracting aperture, see the
coordinate system defined in Fig. 2.7. Γ(ξ′, η′) is the complex amplitude in the
observation plane. The term ρ′ is the distance between a point in the aperture plane
and a point in the observation plane.

Equation (2.48) can be understood as the mathematical formulation of Huygens’
principle. The light source S lying in the source plane with coordinates (ξ, η)
radiates spherical waves. A(x,y) is the complex amplitude of such a wave in the
aperture plane. At first an opaque aperture with only one hole at the position (x,y) is
considered. Such a hole is now the source for secondary waves. The field at the
position (ξ′, η′) of the diffraction plane is proportional to the field at the entrance
side of the aperture A(x,y) and to the field of the secondary spherical wave emerging
from (x,y), described by expð�i2p=kq0Þ=q0. Now the entire aperture as a plane
consisting of many sources for secondary waves is considered. The entire resulting
field in the diffraction plane is therefore the integral over all secondary spherical
waves, emerging from the aperture plane.

From the Huygens’ principle it follows that the secondary waves not only
propagate in the forward direction, but also back towards the source. Yet, experi-
ment demonstrates that the wavefronts always propagate in one direction. To
exclude this unrealistic situation the inclination factor Q defined in Eq. (2.50) is
formally introduced into the Fresnel-Kirchhoff integral. Q depends on the angle θ
between the incident light from the source and the unit vector~n perpendicular to the
aperture plane, and on the angle θ′ between the diffracted light and~n, see Fig. 2.8.
Q is approximately zero for h � 0 and h0 � p. This excludes the concept of waves
travelling in the backward direction. In most practical situations both θ and θ′ are

Diffraction
plane

y

x ξ'

η'

z

d

ρ'

Aperture
plane

Source
plane

S
ξ

ηFig. 2.7 Coordinate system
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very small and Q � 1. The inclination factor can be considered as an ad hoc
correction to the diffraction integral, as done here, or be derived in the formal
diffraction theory [73, 116].

Some authors use a “+” sign in the argument of the exponential function of the
Fresnel-Kirchhoff integral ½Cðn; gÞ ¼ . . .Aðx; yÞ expðþi2p=kq0Þ=q0. . .� instead of
the “−” sign used here. This is dependent on whether we define the harmonic wave
in Eq. (2.14), as either exp þiuð Þ or exp �iuð Þ. However, using the “+” sign in Eq.
(2.48) leads to the same expressions for all measurable quantities, as e.g. the
intensity and the magnitude of the interference phase used in Digital Holographic
Interferometry.

2.5 Speckle

A rough surface illuminated with coherent light always appears “grainy” or
“speckly” to an observer. This is due to the random fluctuations in intensity of the
light scattered from the surface and gives rise to a series of and dark and bright
spots or known as speckle, and forms a speckle pattern across the surface (Fig. 2.9).
A speckle pattern develops if the height variations of the rough surface are larger
than the wavelength of the light.

Speckle results from interference of light scattered by the surface points. The
phase of the waves scattered by different surface points fluctuate statistically due to
the height variations. If these waves interfere with each other, a stationary speckle
pattern is observed.

S P(ξ',η')

θ'

θ
n

Fig. 2.8 Propagation geometry

Fig. 2.9 A speckle pattern
from a rough surface under
coherent illumination
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It can be shown that the probability density function for the intensity in a speckle
pattern obeys negative exponential statistics [72]:

P Ið ÞdI ¼ 1
Ih i exp � I

Ih i
� 	

ð2:51Þ

P Ið ÞdI is the probability that the intensity at a certain point is lies between I and
I þ dI. Ih i is the mean intensity of the entire speckle field. The most probable
intensity value of a speckle is therefore zero, i.e. most speckles are black. The
standard deviation rI is calculated by

rI ¼ Ih i ð2:52Þ

That means the intensity variations are in the same order as the mean value. The
usual definition of the contrast of the speckle pattern is

V ¼ rI
Ih i ð2:53Þ

The contrast of a speckle pattern is therefore always unity.
One can distinguish between objective and subjective speckle formation. An

objective speckle pattern develops on a screen, located in a distance z from the
illuminated surface, Fig. 2.10. There is no imaging system between the surface and
the screen. The size of an individual speckle in an objective speckle pattern can be
estimated using the spatial frequency formula of Eq. (2.30). The two edge points of
the illuminated surface form the highest spatial frequency given as,

fmax ¼ 2
k
sin

hmax

2
� L

kz
ð2:54Þ

The reciprocal of fmax is a measure for the speckle size; and hence the diameter of
the speckle is,

L

z

P

Fig. 2.10 Objective speckle
formation
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dSp ¼ kz
L

ð2:55Þ

A subjective speckle pattern develops if the illuminated surface is focused with
an imaging system, e.g. a camera lens or the human eye, as in Fig. 2.11. In this case
the speckle diameter depends on the aperture diameter a of the imaging system. The
size of a speckle in a subjective speckle pattern can be estimated again using the
spatial frequency:

fmax ¼ 2
k
sin

hmax

2

� 	
� a

kb
ð2:56Þ

where b is the image distance of the imaging system. It follows that the speckle
diameter is given by

dSp ¼ kb
a

ð2:57Þ

The speckle size can be increased by reducing the aperture of the imaging
system.

2.6 Holography

2.6.1 Hologram Recording and Reconstruction

Holograms are usually recorded with an optical set-up consisting of a light source
(e.g. a laser), mirrors and lenses for beam guiding and a recording device (e.g. a
photographic sensor). A typical set-up is shown in Fig. 2.12 [79, 121]. Light with
sufficient coherence is split into two waves of reduced amplitude by a beam splitter

b

a

Fig. 2.11 Subjective speckle
formation
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(BS). The first wave illuminates the object, is scattered at the object surface and
reflected towards the recording medium. The second wave—the reference wave—
directly illuminates the light sensitive medium. The waves interfere with each other
to produce a characteristic interference pattern. In classical photographic hologra-
phy the interference pattern is recorded on a photosensitive material such as silver
halide films or plates and rendered permanent by wet chemical development of the
film. In digital holography the interference pattern is recorded directly onto an
electronic photosensor such as a CCD or CMOS array. The recorded interference
pattern is the hologram.

The original object wave is reconstructed by illuminating the hologram with the
reference wave, Fig. 2.13. An observer sees a virtual image, which is optically
indistinguishable from the original object. The reconstructed image exhibits all
effects of perspective, parallax and depth-of-field.

The holographic process is described mathematically using the formalism of
Sect. 2.2. Across the extent of the photographic plate, the complex amplitude of the
object wave is described by

EO x;yð Þ ¼ aO x;yð Þ exp iuO x;yð Þð Þ ð2:58Þ

with real amplitude aO and phase uO.

ER x;yð Þ ¼ aR x;yð Þ exp iuR x;yð Þð Þ ð2:59Þ

Laser

BS

Object Hologram

Fig. 2.12 Hologram recording
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is the complex amplitude of the reference wave with real amplitude aR and phase
uR:

Both waves interfere at the surface of the recording medium and the resultant
intensity is described by

I x;yð Þ ¼ EO x;yð Þ þ ER x;yð Þj j2
¼ EO x;yð Þ þ ER x;yð Þð Þ EO x;yð Þ þ ER x;yð Þð Þ�
¼ ER x;yð ÞE�

R x;yð Þ þ EO x;yð ÞE�
O x;yð Þ þ EO x; yÞE�

R x;yð Þ þ ER x;yð ÞE�
O x; yð Þ

ð2:60Þ

The amplitude transmission hðx; yÞ of the developed photographic plate (or of
other recording media) is proportional to I(x, y):

h x;yð Þ ¼ h0 þ bsI x;yð Þ ð2:61Þ

The constant β is the slope of the amplitude transmittance versus exposure
characteristic of the light sensitive material. For photographic emulsions β is neg-
ative. The exposure duration is denoted by τ and h0 is the amplitude transmission of
the unexposed plate; h(x,y) is the hologram function. In Digital Holography using
CCD or CMOS arrays as the recording medium, h0 can be neglected.

For hologram reconstruction in classical holography, the hologram is illuminated
with a replica of the original reference wave in terms of wavelength and phase. This
is represented mathematically as a multiplication of the amplitude transmission of
the medium with the complex amplitude of the reconstruction (reference) wave,

Laser

BS

Virtual image Hologram

Observer

stop

Fig. 2.13 Hologram reconstruction
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ER x;yð Þh x;yð Þ ¼ h0 þ bs a2R þ a2O

 �� 


ER x;yð Þ
þ bsa2REO x;yð Þ þ bsE2

R x;yð ÞE�
O x;yð Þ ð2:62Þ

The first term on the right side of this equation is the reference wave multiplied
by a constant factor. It represents the non-diffracted wave passing through the
hologram (zero diffraction order). The second term is the reconstructed object wave
and forms the virtual image. The real factor bsa2R only influences the brightness of
the image. The third term generates a distorted real image of the object. For off-axis
holography the virtual image, the real image and the non-diffracted wave are
spatially separated.

The reason for the distortion of the real image is the spatially varying complex
factor E2

R, which modulates the image forming conjugate object wave E�
O. An

undistorted real image can be generated by replaying the hologram with the
complex conjugate of the reference beam E�

R. This is mathematically represented
by,

E�
R x; yð Þh x; yð Þ ¼ h0 þ bs a2R þ a2O


 �� 

E�
R x; yð Þ

þ bsa2RE
�
O x; yð Þ þ bsE�2

R x; yð ÞEO x; yð Þ ð2:63Þ

2.6.2 The Imaging Equations

The virtual image appears at the position of the original object if the hologram is
reconstructed with the same parameters as those used in the recording process.
However, if one changes the wavelength or the coordinates of the reconstruction
wave source point with respect to the coordinates of the reference wave source
point used in the recording process, the position of the reconstructed image moves.
The coordinate shift is different for all points, thus the shape of the reconstructed
object is distorted. The image magnification is also influenced by the reconstruction
parameters.

The imaging equations relate the coordinates of an object point O to those of the
corresponding point in the reconstructed image. These equations are quoted here
without derivation but are described in some detail in other textbooks [79, 121].

The coordinate system is shown in Fig. 2.14. The coordinates of the object point
O are denoted as ðxO; yO; zOÞ, ðxR; yR; zRÞ are the coordinates of the source point of
the reference wave used for hologram recording and ðxP; yP; zPÞ are the coordinates
of the source point of the reconstruction wave. The ratio between the recording
wavelength λ1 and the reconstruction wavelength k2 is denoted by l ¼ k2=k1. The
coordinates of the point in the reconstructed virtual image, which corresponds to the
object point O, are:

x1 ¼ xPzOzR þ lxOzPzR � lxRzPzO
zOzR þ lzPzR � lzPzO

ð2:64Þ
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y1 ¼ yPzOzR þ lyOzPzR � lyRzPzO
zOzR þ lzPzR � lzPzO

ð2:65Þ

z1 ¼ zPzOzR
zOzR þ lzPzR � lzPzO

ð2:66Þ

The coordinates of the point in the reconstructed real image, which corresponds
to the object point O, are:

x2 ¼ xPzOzR � lxOzPzR þ lxRzPzO
zOzR � lzPzR þ lzPzO

ð2:67Þ

y2 ¼ yPzOzR � lyOzPzR þ lyRzPzO
zOzR � lzPzR þ lzPzO

ð2:68Þ

z2 ¼ zPzOzR
zOzR � lzPzR þ lzPzO

ð2:69Þ

y
x

z

Reference source
point (xR, yR, zR)

Recording
medium

Object source
point (xO, yO, zO)

y
x

z

Reconstruction source
point (xP, yP, zP)

Hologram

(a) 

(b) 

Fig. 2.14 Coordinate system
used to describe holographic
reconstruction. a Hologram
recording. b Image
reconstruction
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An extended object can be considered to be made up of a number of point
objects. The coordinates of all surface points are described by the above equations.
The lateral magnification of the entire virtual image is:

Mlat;1 ¼ dx1
dxO

¼ 1þ z0
1
lzP

� 1
zR

� 	� ��1

ð2:70Þ

The lateral magnification of the real image is given by,

Mlat;2 ¼ dx2
dxO

¼ 1� z0
1
lzP

þ 1
zR

� 	� ��1

ð2:71Þ

The longitudinal magnification of the virtual image is given by:

Mlong;1 ¼ dz1
dzO

¼ 1
l
M2

lat;1 ð2:72Þ

The longitudinal magnification of the real image is:

Mlong;2 ¼ dz2
dzO

¼ � 1
l
M2

lat;2 ð2:73Þ

There is a difference between real and virtual image which should be noted:
since the real image is formed by the conjugate object wave O*, it has the curious
property that its depth is inverted. Corresponding points of the virtual image (which
coincide with the original object points) and of the real image are located at equal
distances from the hologram plane, but at opposite sides of it. The background and
the foreground of the real image are therefore exchanged. The real image appears
with the “wrong perspective”. It is called a pseudoscopic image, in contrast to a
normal or orthoscopic image.

2.7 Holographic Interferometry

2.7.1 Generation of Holographic Interferograms

Holographic Interferometry (HI) is a method of measuring optical path length
variations, which are caused by deformations of opaque bodies or refractive index
variations in transparent media, e.g. fluids or gases [175]. HI is a non-contact, non-
destructive metrological technique with a very high measurement sensitivity.
Optical path changes up to one hundredth of a wavelength are resolvable.

Two coherent wave fields, which are reflected from an object when it is in two
different states of excitation, interfere. This is achieved e.g. in double-exposure
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holography by the recording of two wave fields on a single photographic plate,
Fig. 2.15. The first exposure represents the object in its reference state (undeformed
state), the second exposure represents the object in its loaded (deformed) state. The
hologram is reconstructed by illumination with the reference wave, Fig. 2.16. As a
result of the superposition of two holographic recordings with slightly different

Laser

BS

Object,
primary state

Hologram

Object,
loaded state

Fig. 2.15 Recording of a double exposed hologram

Laser

BS

Virtual images,
both states

Hologram

Observer

Fig. 2.16 Reconstruction of the double-exposed hologram
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object waves, only one image superimposed by interference fringes is visible, see
example in Fig. 2.17. From this holographic interferogram the observer can
determine optical path changes due to the object deformation or other effects.

In real time HI, the hologram is replaced—after chemical processing—in exactly
the original recording position. When it is illuminated with the reference wave, the
reconstructed virtual image coincides with the object and is superimposed upon it.
Interference patterns caused by phase changes between the holographically
reconstructed reference object wave and the actual object wave are observable in
real time.

The following mathematical description is valid for both the double exposure
and real time techniques. The complex amplitude of the object wave in its initial
state is:

E1 x;yð Þ ¼ a x;yð Þ exp iu x;yð Þ½ � ð2:74Þ

where aðx;yÞ is the real amplitude and uðx;yÞ is the phase of the object wave.
Optical path changes due to deformations of the object surface can be described

by a variation of the phase from φ to φ + Δφ. The term Δφ represents the difference
between the reference and the actual phase and is known as the interference phase.
The complex amplitude of the actual object wave is therefore denoted by

E2 x;yð Þ ¼ a x;yð Þ exp i u x;yð Þ þ Du x;yð Þð Þ½ � ð2:75Þ

The intensity of a holographic interference pattern is described by the square of
the sum of the complex amplitudes. It is calculated as follows:

I x;yð Þ ¼ E1 þ E2j j2¼ E1 þ E2ð Þ E1 þ E2ð Þ�
¼ 2a2 1þ cos Duð Þð Þ ð2:76Þ

The general expression for the intensity within an interference pattern is
therefore:

Fig. 2.17 A holographic
interferogram of a pressure
vessel
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I x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cosDu x;yð Þ ð2:77Þ

The parameters Aðx;yÞ and Bðx;yÞ depend on the coordinates in the
interferogram.

In practice these parameters are not known due to several disturbing effects, such
as,

• uneven illumination of the object due to the Gaussian profile the expanded laser
beam gives rise to varying brightness of the holographic interferogram.

• high frequency speckle noise is superimposed upon interferogram.
• additional superimposed diffraction patterns due to dust particles in the optical

path.
• the varying reflectivity of the object under investigation may influence the

brightness and visibility of the interferogram.
• electronic recording and transmission of holographic interferograms can gen-

erate additional noise.

Equation (2.77) describes the relation between the intensity of the interference
pattern and the interference phase, which contains the information about the
physical quantity to be measured (object displacement, refractive index change or
object shape). In general it is not possible to calculate Δφ directly from the mea-
sured intensity, because the parameters A(x, y) and B(x, y) are not known. In
addition the cosine is an even function (cos 30° = cos −30°) and the sign of Δφ
cannot be determined unambiguously. Therefore several techniques have been
developed to determine the interference phase by recording additional information.
The most common techniques are the various phase shifting methods, which are
briefly discussed in Sect. 2.7.5.

2.7.2 Displacement Measurement by HI

In this chapter a relationship between the measured interference phase and the
displacement of the object surface under investigation is derived [121, 218]. The
geometric quantities are explained in Fig. 2.18. The vector ~d x;y;zð Þ is the dis-
placement vector. It describes the shift of a surface point from its initial position P1
to the new position P2 due to deformation. The terms~s1 and~s2 are unit vectors from
the illumination source point S to P1, and P2 respectively. Similarly,~b1 and~b2 are
unit vectors from P1 to the observation point B, and from P2 to B, respectively. The
optical path difference between a ray from S to B via P1 and a ray from S to B via P2
is therefore given by,

d ¼ SP1 þ P1B� SP2 þ P2B

 �

¼ s1
!SP1

�!þ b1
!

P1B
��!� s2

!SP2
��!� b2

�!
P2B
��! ð2:78Þ
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The lengths SP1=2 and P1=2B are in the range of metres, while ~d
��� ��� is in the range

of several micrometres. The vectors~s1 and~s2 can therefore be replaced by a unit
vector~s pointing into the bisector of the angle spread by~s1 and~s2:

~s1 ¼~s2 ¼~s ð2:79Þ

~b1 and ~b2 are accordingly replaced by a unit vector ~b pointing into the bisector of
the angle spread by ~b1 and ~b2

~b1 ¼~b2 ¼~b ð2:80Þ

The displacement vector ~d x;y;zð Þ is given by:

~d ¼ P1B
��!� P2B

��! ð2:81Þ

and

~d ¼ SP2
�!� SP1

�! ð2:82Þ

Inserting Eqs. (2.79) to (2.82) into Eq. (2.78) gives:

d ¼ ~b�~s
� �

~d ð2:83Þ

The following expression results for the interference phase:

Du x;yð Þ ¼ 2p
k
~d x;y;zð Þ ~b�~s

� �
¼~d x;y;zð Þ~S ð2:84Þ
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Fig. 2.18 Calculation of the
interference phase

2.7 Holographic Interferometry 29



The vector

~S ¼ 2p
k

~b�~s
� �

ð2:85Þ

is called the sensitivity vector. The sensitivity vector is only defined by the
geometry of the holographic arrangement. It gives the direction in which the set-up
has maximum sensitivity. At each point the projection of the displacement vector
onto the sensitivity vector is measured. Equation (2.84) is the basis of all quanti-
tative measurements of the deformation of opaque bodies.

In the general case of a three dimensional deformation field Eq. (2.84) contains
the three components of ~d as unknown parameters. Three interferograms of the
same surface with linear independent sensitivity vectors are necessary to determine
the displacement. In many practical cases it is not the three dimensional displace-
ment field that is of interest, but the deformation perpendicular to the surface. This
out-of-plane deformation can be measured using an optimised set-up with parallel
illumination and observation directions ð~S ¼ 2p=kð0; 0; 2ÞÞ. The component dz is
then calculated from the interference phase by

dz ¼ Du
k
4p

ð2:86Þ

A phase variation of 2π corresponds to a deformation of λ/2.

2.7.3 Holographic Contouring

Another application of HI is the generation of a fringe pattern corresponding to
contours of constant elevation with respect to a reference plane. Such contour
fringes can be used to determine the shape of a three-dimensional object.

Holographic contour interferograms can be generated by different methods. In
the following the

• two-wavelength method and the
• two-illumination-point method

are described. A third method, the two-refractive-index technique, has less practical
applications and is not considered here.

The principal set-up of the two-wavelength method is shown in Fig. 2.19. A
plane wave illuminates the object surface. The back scattered light interferes with
the plane reference wave at the holographic recording medium. In the set-up of
Fig. 2.19 the illumination wave is reflected onto the object surface via a beam
splitter in order to ensure parallel illumination and observation directions. Two
holograms are recorded with different wavelengths k1 and k2 on the same
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photographic plate. This can be done either simultaneously using two lasers with
different wavelengths or in succession by changing the wavelength of a tuneable
laser, e.g. a dye laser. After processing, the double exposed hologram is replaced
and reconstructed with only one of the two wavelengths, say k2. Two virtual images
become visible. The image recorded with k2 coincides with the object surface. The
other image, recorded with k1 but reconstructed with k2, is slightly distorted. The
z-coordinate of this image z’ is calculated with the imaging Eq. (2.66):

z0 ¼ z2Rz

zzR þ k2
k1
z2R � k2

k1
zzR

� z
k1
k2

ð2:87Þ

The indices “1” for virtual image ðz01 � z0Þ and “O” for object ðzO � zÞ are
omitted and it is assumed not to change the source coordinates of the reconstruction
wave with respect to those of the recording coordinates ðzP � zR ! 1Þ. The axial
displacement of the image recorded with k1 but reconstructed with k2 is therefore:

Dz ¼ z0 � z ¼ z
k1 � k2j j

k2
ð2:88Þ

The path difference of the light rays on their way from the source to the surface
and from the surface to the hologram is 2Dz. The corresponding phase shift is thus,

Du x;yð Þ ¼ 2p
k1

2Dz ¼ 4pz
k1 � k2j j
k1k2

ð2:89Þ

The two shifted images interfere. According to Eq. (2.89) the phase shift
depends on the distance z from the hologram plane. All points of the object surface
having the same z-coordinate (height) are therefore connected by a contour line. As
a result an image of the surface superimposed by contour fringes develops. The
height jump between adjacent fringes is:

z
BS

Surface Hologram

Δ

Reference
wave

Fig. 2.19 Holographic
contouring
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DH ¼ z Du ¼ nþ 1ð Þ2pð Þ � z Du ¼ n2pð Þ ¼ k1k2
2 k1 � k2j j ¼

K
2

ð2:90Þ

K ¼ k1k2= k1 � k2j j is known as the synthetic wavelength or equivalent wavelength.
The object is intersected by parallel planes which have a distance of DH, see the
principle in Fig. 2.20 and a typical example in Fig. 2.21.

The equations derived in this chapter are valid only for small wavelength dif-
ferences, because in addition to the axial displacement (which generates contour
lines) also a lateral image displacement occurs. This lateral displacement can be
neglected for small wavelength differences.

The principle of the two-illumination-point method is to make a double exposure
hologram in which the point source illuminating the object is shifted slightly
between the two exposures. If the illumination point S is shifted to S′ between the
two exposures (Fig. 2.22), the resulting optical path length difference δ is:

d ¼ SPþ PB� S0Pþ PB

 � ¼ SP� S0P

¼ s1
! SP

�!� s2
!S0P

�! ð2:91Þ

The unit vectors s1
! and s2

! are defined as for the derivation of the interference
phase due to deformation in Sect. 2.7.2. The same approximation is used and these
vectors are replaced by a common unit vector:

~s1 ¼~s2 ¼~s ð2:92Þ

Furthermore,

~p ¼ SP
�!� S0P

�! ð2:93Þ

is introduced as a vector from S to S′. The optical path difference is then given by

d ¼~p~s ð2:94Þ

Contour
lines

Planes of
constant phase

Fig. 2.20 Object intersection
by contour lines
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The corresponding phase change is:

Du ¼ 2p
k
~p~s ð2:95Þ

Fig. 2.21 Two-wavelength
contour fringes
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Fig. 2.22 Two-illumination
point contouring
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The object surface is intersected by fringes which consist of a set of hyperbo-
loids. Their common foci are the two points of illumination S and S′. If the
dimensions of the object are small compared to the distances between the source
points and the object, plane contouring surfaces result. A collimated illumination
together with a telecentric imaging system also generates plane contouring surfaces.
The distance between two neighbouring surfaces is

DH ¼ k

2 sin h
2

ð2:96Þ

where θ is the angle between the two illumination directions. Equation (2.96) is
analogue to the fringe spacing in an interference pattern formed by two intersecting
plane waves, see Eq. (2.29) in Sect. 2.2.

2.7.4 Refractive Index Measurement by HI

Another application of HI is the measurement of refractive index variations within
transparent media. This mode of HI is used to determine temperature or concen-
tration variations in fluid or gaseous media.

A refractive index change in a transparent medium causes a change of the optical
path length and thereby a phase variation between two light waves passing the
medium before and after the change. The interference phase due to refractive index
variations is given by:

Du x;yð Þ ¼ 2p
k

Zl2
l1

n x;y;zð Þ � n0½ �dz ð2:97Þ

where n0 is the refractive index of the medium under observation in its initial,
unperturbed state and n(x, y, z) is the final refractive index distribution. The light
passes through the medium in the z-direction and integration is along the propa-
gation direction. Equation (2.97) is valid for small refractive index gradients, where
the light rays propagate along straight lines. The simplest case is that of a two-
dimensional phase object with no variation of refractive index in z. In this case the
refractive index distribution n(x, y) can be calculated directly from Eq. (2.97). In the
general case of a refractive index varying also in the z-direction Eq. (2.97) cannot
be solved without further information about the process. However, in many prac-
tical experiments only two-dimensional phase objects have to be considered.

A set-up for the recording of holograms of transparent phase objects consists of a
coherent light source, the transparent medium under investigation and optical
components as in Fig. 2.23.
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The laser beam is split into two separate waves. One wave is expanded by a
telescopic lens system and illuminates the medium, which is located for example in
a test cell with transparent walls. The transmitted part, the object wave, interferes
with the reference wave at the surface of the hologram plate. After processing, the
object wave is reconstructed by illuminating the hologram with the reference wave
again, Fig. 2.24. Holographic Interferometry can be carried out either by the double
exposure method or by the real-time method.

A holographic interferogram of a pure transparent object without any scattering
consists of clear fringes undisturbed by speckle noise. These fringes are not
localized in space, because there are no object contours visible. Yet, for some
applications localized fringes are desired. In that case a diffusing screen can be
placed in front of or behind the object volume.

2.7.5 Phase Shifting HI

As discussed in Sect. 2.7.1 it is not possible to calculate Δφ unambiguously from
the measured intensity, because the parameters A(x, y) and B(x, y) in Eq. (2.77) are
not known and the sign is not determined.

Phase shifting Holographic Interferometry is a method which enables us to
determine the interference phase by recording additional information [17, 36, 98,
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HologramPhase
object

Fig. 2.23 Recording set-up
for transparent phase objects
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HologramVirtual image
of phase object

Observer

Fig. 2.24 Reconstruction of
phase objects
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99]. The principle is to record three or more interference patterns with mutual phase
shifts. For the case of three recordings, the interference patterns are described by:

I1 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duð Þ
I2 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ að Þ
I3 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ 2að Þ

ð2:98Þ

The equation system can be solved unambiguously for Δφ if the phase angle α is
known (e.g. 120°).

The phase shift can be realized in practice for example by employing a mirror
mounted on a piezo-electric translator. The mirror is placed either in the object
beam or in the reference beam. If appropriate voltages are applied to the piezo-
electric translator during the hologram reconstruction, well defined path changes in
the range of fractions of a wavelength can be introduced. These path changes
correspond to phase differences between object—and reference wave.

Instead of using the minimum number of three reconstructions with two mutual
phase shifts, Eq. (2.98), it is also possible to generate four reconstructions with
three mutual phase shifts:

I1 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duð Þ
I2 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ að Þ
I3 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ 2að Þ
I4 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ 3að Þ

ð2:99Þ

In that case the equation system can be solved without knowledge of the phase
shift angle, α, as long as it is constant. The solution for Δφ is [121]:

Du ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 þ I2 � I3 � I4

p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I2 � 3I3 � I1 þ I4

p
I2 þ I3 � I1 � I4

ð2:100Þ

Various HI phase shifting methods have been published [121], which differ in
the number of recordings (at least 3), the value of α, and the method of generating
the phase shift (stepwise or continuously). These methods will not be discussed in
detail here. The principle has been described briefly in order to prepare for a
comparison of phase determination in conventional HI using photographic plates
and with the techniques used to obtain phase information in Digital Holographic
Interferometry (Chap. 4). Finally it is noted that phase shifting HI is not the only
way to determine the phase from a fringe pattern, but it is the most commonly
applied. Other phase evaluating techniques include Fourier Transform methods,
skeletonizing or heterodyne techniques.
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2.7.6 Phase Unwrapping

Even after having determined the interference phase by a method such as phase
shifting HI, a problem remains: the cosine function is periodic, i.e. the interference
phase distribution is indefinite to an additive integer of 2π:

cos Duð Þ ¼ cos Duþ 2pnð Þ n 2 Z ð2:101Þ

Interference phase maps calculated with the arctan function or other inverse
trigonometric functions therefore contain 2π jumps at those positions where an
extreme value of Δφ (either −π or π) is reached. The interference phase change
along a line of such a phase image resembles a saw tooth function, Fig. 2.25a. The
correction of these modulo 2π jumps in order to generate a continuous phase
distribution is called demodulation, continuation or phase unwrapping.

Several unwrapping algorithms have been developed in the last years. In the
following the so called path-dependent unwrapping algorithm is described. At first
a one-dimensional interference phase distribution is considered. The difference
between the phase values of adjacent pixels Duðnþ 1Þ � DuðnÞ is calculated. If
this difference is less than −π, all phase values from the (n + 1)th pixel onwards are
increased by 2π. If this difference is greater than +π, 2π is subtracted from all phase
values, starting from (n + 1). If none of the above mentioned conditions is valid the
phase value remains unchanged. The practical implementation of this procedure is
done by first calculating a step function, which cumulates the 2π jumps for all
pixels, Fig. 2.25b. The continuous phase distribution is then calculated by adding
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4π

0
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6π
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Fig. 2.25 Phase unwrapping.
a Interference phase modulo
2π: Du2pðxÞ b Step function:
DujumpðxÞ c unwrapped
interference phase:
Du2pðxÞ þ DujumpðxÞ
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this step function to the unwrapped phase distribution, Fig. 2.25c. Almost every
pixel can be used as a starting point for this unwrapping procedure, not necessarily
the pixel at the start of the line. If a central pixel is chosen as the starting point the
procedure has to be carried out in both directions from that point.

This one-dimensional unwrapping scheme can be transferred to two dimensions.
One possibility is to unwrap first one row of the two dimensional phase map with
the algorithm described above. The pixels of this unwrapped row act then as
starting points for column demodulation.

One disadvantage of the simple unwrapping procedure described here is that
difficulties occur if masked regions are in the phase image. These masked areas
might be caused by e.g. holes in the object surface. To avoid this and other diffi-
culties several other, more sophisticated demodulation algorithms have been
developed [121].

Finally it should be mentioned that the unwrapping procedure is always the same
for all methods of metrology that generate saw-tooth like images. This means the
various unwrapping algorithm developed for HI and other methods can be used also
for Digital Holographic Interferometry, because this technique also generates
modulo 2π-images (see Chap. 4).
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Chapter 3
Digital Holography

3.1 General Principles

The concept of digital holographic recording is illustrated in Fig. 3.1a [196, 198]. A
plane reference wave and the wave reflected from the object interfere at the surface
of an electronic sensor array (e.g. Charged Coupled Device, CCD, or Comple-
mentary Metal Oxide Semiconductor, CMOS). The resulting hologram is elec-
tronically recorded and stored in a computer. The object is, in general, a three
dimensional body with diffusely reflecting surfaces, located at a distance d from the
sensor (measured to some representative plane). This is just the classical off-axis
geometry of photographic holography save that the recording medium is an elec-
tronic sensor array rather than photographic film.

In classical optical reconstruction using a replica of the original reference wave
to illuminate the hologram, a “virtual” (primary) image is recreated at a distance
d behind the sensor plane as viewed by an observer; a “real” (secondary) image is
also formed at a distance d, from the sensor but in front of it, between it and the
observer, see Fig. 3.1b. In DH, though, a physical image in virtual or real space is
not created; numerical reconstruction by computer at a given plane produces a
primary or secondary image on a monitor.

Using the coordinate system of Fig. 3.2, a light wave diffracted at an aperture (in
this case a hologram) perpendicular to an incoming beam is described by the
Fresnel-Kirchhoff integral, see Eq. (2.48), as

C n0; g0ð Þ ¼ i
k

Z1
�1

Z1
�1

h x; yð ÞER x; yð Þ exp �i 2pk q
0� �

q0
dxdy ð3:1Þ
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where

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� n0ð Þ2þ y� g0ð Þ2þd2

q
ð3:2Þ

h(x,y) is the hologram function and ρ′ is the distance between a point in the
hologram plane and a point in the reconstruction plane. The inclination factor is set
to 1, since the angles θ′ and θ″ (see Sect. 2.4) are approximately zero. This is valid
for all the numerical reconstruction algorithms in this book.
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A plane reference wave ER x; yð Þ can be described in terms of its real amplitude,

ER ¼ aR þ i0 ¼ aR ð3:3Þ

The diffraction pattern is calculated at a distance d behind the sensor plane, so
that it reconstructs the complex amplitude of the wave in the plane of the real
image.

Equation (3.1) forms the basis for numerical reconstruction from a hologram.
Because the reconstructed wave field Cðn0; g0Þ is a complex function, both the
intensity as well as its phase can be extracted [195]. This is in contrast to the case of
optical hologram reconstruction, in which only the intensity is obtainable. This
interesting property of Digital Holography is used in Digital Holographic Inter-
ferometry, see Chap. 4.

As discussed in Sect. 2.6 the real image could be distorted. According to
Eq. (2.63) an undistorted real image can be produced by using the conjugate
reference beam for reconstruction. To numerically reconstruct an undistorted real
image it is therefore necessary to insert E�

R instead of ER into Eq. (3.1):

C n; gð Þ ¼ i
k

Z1
�1

Z1
�1

h x; yð ÞE�
R x; yð Þ exp �i 2pk q

� �
q

dxdy ð3:4Þ

with

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� nð Þ2þ y� gð Þ2þd2

q
ð3:5Þ

This reconstruction scheme is shown in Fig. 3.1c. The real image is formed at
the position where the object was located during recording. It should be noted that
for the plane reference wave defined in Eq. (3.3) both reconstruction formulas, Eqs.
(3.1) and (3.4), are equivalent since ER ¼ E�

R � aR.
The arrangement of Fig. 3.1 with a plane reference wave perpendicularly illu-

minating the sensor is commonly used in Digital Holography. Other recording
geometries are discussed later.

Reconstruction of the virtual image is also possible by either selecting the
negative branch of the square root or introducing the imaging properties of a lens
into the numerical reconstruction process [196]. This lens corresponds to the eye of
an observer viewing an optically reconstructed hologram. In the simplest case this
lens is located directly behind the hologram, as in Fig. 3.3. The imaging properties
of a lens with focal distance f are represented by a complex factor, L(x,y), as

L x; yð Þ ¼ exp i
p
kf

x2 þ y2
� �� �

ð3:6Þ
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The factor L(x,y) is calculated in Annex B1. For unity magnification, the lens
should have a focal length of f ¼ d=2:

The lens described by Eq. (3.6) introduces phase aberrations, which can be
corrected by multiplying the reconstructed wave field by another factor

P n0; g0ð Þ ¼ exp i
p
kf

n02 þ g02
� �� �

ð3:7Þ

This correction factor is derived in Annex B2. The full equation which describes
reconstruction via a virtual lens with f ¼ d=2 is therefore

C n0; g0ð Þ ¼ i
k
P n0; g0ð Þ

Z1
�1

Z1
�1

h x; yð ÞER x; yð ÞL x; yð Þ exp �i 2pk q
0� �

q0
dxdy ð3:8Þ

3.2 Numerical Reconstruction

3.2.1 Reconstruction by the Fresnel Approximation

For x- and y-values, as well as for ξ- and η-values, which are small compared to the
distance d between the reconstruction plane and the sensor, the expression Eq. (3.5)
can be expanded with a Taylor series:

q ¼ d þ n� xð Þ2
2d

þ g� yð Þ2
2d

� 1
8

n� xð Þ2þ g� yð Þ2
h i2

d3
þ � � � ð3:9Þ

The fourth term in Eq. (3.9) can be neglected, if it is small compared to the
wavelength [116], i.e. if,

1
8

n� xð Þ2þ g� yð Þ2
h i2

d3
�k ð3:10Þ
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Fig. 3.3 Reconstruction of
the virtual image
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Or, rewriting in terms of d, we have

d � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8
½ðn� xÞ2 þ ðg� yÞ2�2

k

s
ð3:11Þ

Then the distance ρ consists of linear and quadratic terms:

q ¼ d þ n� xð Þ2
2d

þ g� yð Þ2
2d

ð3:12Þ

With the additional approximation of replacing the denominator in (3.4) by d the
following expression results for reconstruction of the real image:

C n; gð Þ ¼ i
kd

exp �i
2p
k
d

� �

	
Z1
�1

Z1
�1

E�
R x; yð Þh x; yð Þ exp �i

p
kd

n� xð Þ2þ g� yð Þ2
	 
h i

dxdy

ð3:13Þ

If the multiplication terms in the argument of the exponential under the integral
are carried out we get

C n; gð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �i

p
kd

n2 þ g2
� �h i

	
Z1
�1

Z1
�1

E�
R x; yð Þh x; yð Þ exp �i

p
kd

x2 þ y2
� �h i

exp i
2p
kd

xnþ ygð Þ
� �

dxdy

ð3:14Þ

This equation is known as the Fresnel approximation or Fresnel transformation
due to its mathematical similarity with the Fourier Transform (see below). It enables
reconstruction of the wavefield in a plane behind the hologram, in this case in the
plane of the real image.

The intensity is given by its square,

I n; gð Þ ¼ C n; gð Þj j2 ð3:15Þ

and its phase by

u n; gð Þ ¼ arctan
Im C n; gð Þ½ �
Re C n; gð Þ½ � ð3:16Þ
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where “Re” denotes the real part and “Im” the imaginary part of the wave.
Reconstruction of the virtual image in the Fresnel approximation can be

expressed as,

C n0; g0ð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �i

p
kd

n02 þ g02
� �h i

P n0; g0ð Þ

	
Z1
�1

Z1
�1

ER x; yð ÞL x; yð Þh x; yð Þ exp �i
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

¼ i
kd

exp �i
2p
k
d

� �
exp þi

p
kd

n02 þ g02
� �h i

	
Z1
�1

Z1
�1

ER x; yð Þh x; yð Þ exp þi
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

ð3:17Þ

Alternatively we can insert a negative distance into Eq. (3.14), which has the
added advantage that the virtual image is not rotated by 180° because of the action
of performing the Fourier transform.

To digitise the Fresnel transform in Eq. (3.14), the following definitions and
substitutions are introduced [261],

u ¼ n
kd

; v ¼ g
kd

ð3:18Þ

Thus (3.14) is now expressed as,

C u; vð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd u2 þ v2

� �� �

	
Z1
�1

Z1
�1

E�
R x; yð Þh x; yð Þ exp �i

p
kd

x2 þ y2
� �h i

exp i2p xuþ yvð Þ½ �dxdy

ð3:19Þ

A comparison of Eq. (3.19) with the definition of the two-dimensional Fourier
transform (see Annex A) shows that the Fresnel approximation is the just the inverse
Fourier transformation of the function E�

R x; yð Þh x; yð Þ exp �ip=kd x2 þ y2ð Þ½ �,

C u; vð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd u2 þ v2

� �� �
	 =�1 E�

R x; yð Þh x; yð Þ exp �i
p
kd

x2 þ y2
� �h in o ð3:20Þ

The function Γ can be digitised if the hologram function h(x,y) is sampled on a
rectangular raster of N × N points, with steps Δx and Δy along the coordinates. The
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distances between neighbouring pixels on the sensor array in the horizontal and
vertical directions are given by Δx and Δy respectively. With these discrete values
included, the integrals in (3.19) are written in terms of finite sums, i.e.

C m; nð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd m2Du2 þ n2Dv2

� �� �

	
XN�1

k¼0

XN�1

l¼0

E�
R k; lð Þh k; lð Þ exp �i

p
kd

k2Dx2 þ l2Dy2
� �h i

exp i2p kDxmDuþ lDynDvð Þ½ �

for m ¼ 0; 1; :::;N � 1; and n ¼ 0; 1; . . .;N � 1

ð3:21Þ

According to Fourier transform procedures, and Δu, Δv can be written in terms
of Δx, Δy (see Annex A) as,

Du ¼ 1
NDx

; Dv ¼ 1
NDy

ð3:22Þ

After re-substitution, we have,

Dn ¼ kd
NDx

; Dg ¼ kd
NDy

ð3:23Þ

Applying these relationships, Eq. (3.21) converts to

C m; nð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd

m2

N2Dx2
þ n2

N2Dy2

� �� �

	
XN�1

k¼0

XN�1

l¼0

E�
R k; lð Þh k; lð Þ exp �i

p
kd

k2Dx2 þ l2Dy2
� �h i

exp i2p
km
N

þ ln
N

� �� �

ð3:24Þ

This is the discrete Fresnel transform. The matrix Γ is evaluated by multiplying
E�
R k; lð Þwith h(k,l) and exp �ip=ðkdÞ k2Dx2 þ l2Dy2ð Þ½ �, followed by application of an

inverse discrete Fourier transform to the product. This calculation is accomplished
most efficiently using the Fast Fourier Transform (FFT) algorithm. The factors before
the sum term in Eq. (3.24) only affect the overall phase and can be neglected if it is
only the intensity in Eq. (3.15) that is of interest. This is also the case if phase
differences between holograms recorded with the same wavelength have to be cal-
culated, according to,(Du ¼ u1 þ const:� u2 þ const:ð Þ ¼ u1 � u2).
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The corresponding discrete formula for reconstruction with a virtual lens of
f ¼ d=2 (Eq. 3.17) is,

C m; nð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp þipkd

m2

N2Dx2
þ n2

N2Dy2

� �� �

	
XN�1

k¼0

XN�1

l¼0

ER k; lð Þh k; lð Þ exp þi
p
kd

k2Dx2 þ l2Dy2
� �h i

exp i2p
km
N

þ ln
N

� �� �

ð3:25Þ

A typical digital hologram of a dice recorded with the geometry of Fig. 3.1 is
shown in Fig. 3.4. The dice is placed a distance d = 1.054 m from a sensor array
with 1,024 × 1,024 pixels of pitch Dx ¼ Dy ¼ 6:8 lm. The recording wavelength is
632.8 nm. Numerical reconstruction of the real image is performed according to
Eqs. (3.14) and (3.24) and illustrated in Fig. 3.5. The bright square in the centre of
the image is the non-diffracted (zero order) reconstruction wave and corresponds to
the first term on the right side of Eq. (2.63). Because of the off-axis geometry, the
image is spatially separated from the zero order term. The other (virtual) image is
out-of-focus in this reconstruction.

An interesting property of (off-axis) holography is that every part of a hologram
contains all the information about the entire object. This is illustrated by the
holograms of Figs. 3.6 and 3.8, where black masks cover nearly half of the holo-
gram areas. Nevertheless, the entire cube is visible without obstruction in the
reconstructions (Figs. 3.7 and 3.9). The masks are visible as shadows in the zero
order terms. The reduction of the effective pixel number leads to a consequent

Fig. 3.4 Digital hologram of
a die
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reduction of the resolution in the reconstructed images. This is equivalent to the
increase of the speckle size observed in optical hologram reconstruction when the
aperture is reduced.

Regarding Eq. (3.23), the pixel distances in the reconstructed image Δξ and Δη
are dependent on the chosen numerical reconstruction distance d. This is because

Fig. 3.5 Numerical
reconstruction

Fig. 3.6 Masked digital
hologram
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Eq. (3.23) corresponds to the diffraction limited resolution of an optical system. The
hologram corresponds to the aperture of the optical system with a side of length
NDx; a diffraction pattern develops at a distance d behind the hologram. The term
Dn ¼ kd=NDx therefore describes the half-diameter of the Airy disk or the speckle
diameter in the plane of the reconstructed image, accordingly, limits the resolution.

Fig. 3.7 Reconstruction

Fig. 3.8 Masked digital
hologram
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This can be regarded as a “natural scaling” algorithm, setting the resolution of the
image reconstructed by a discrete Fresnel transform always to the physical limit.

A simple Matlab© Fresnel transformation reconstruction routine is shown in
Appendix C.

3.2.2 Reconstruction by the Convolution Approach

Numerical processing of the Fresnel-Kirchhoff integral Eqs. (3.1) and (3.4) without
the application of any approximations is time consuming. For faster and more
efficient numerical processing, a different but equivalent formulation is often more
suitable. This formulation makes use of the convolution theorem and, within the
scope of this book, is accordingly denoted as the “convolution approach”. Some
other publications use the term Angular Spectrum Method (ASM), see e.g. [243].
Demetrakopoulos and Mittra applied this method for numerical reconstruction of
suboptical holograms [41]. Later this approach was applied to optical holography
by Kreis [124].

The reconstruction formula Eq. (3.4) can be interpreted as a superposition
integral,

C n; gð Þ ¼
Z1
�1

Z1
�1

h x; yð ÞE�
R x; yð Þg n; g; x; yð Þdxdy ð3:26Þ

Fig. 3.9 Reconstruction
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where the impulse response g(x,y,ξ,η) is given by

g n; g; x; yð Þ ¼ i
k

exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� nð Þ2þ y� gð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� nð Þ2þ y� gð Þ2

q ð3:27Þ

According to Eq. (3.26) the linear system characterized by g n; g; x; yð Þ ¼
g n� x; g� yð Þ is shift-invariant. The superposition integral can be regarded
therefore as a convolution and the convolution theorem (Annex A) can be applied.
According to this approach the Fourier transform of the convolution of h � E�

R with
g is the product of the individual transforms = hE�

R


 �
and = gf g. So C n; gð Þ can be

calculated by, firstly Fourier transforming h � E�
R, followed by multiplication with

the Fourier transform of g, and, finally, taking an inverse Fourier transform of the
product. Three Fourier transforms are therefore necessary to complete the whole
process. The individual Fourier transforms are efficiently carried out using the FFT
algorithm.

For numerical processing the discrete impulse response function has to be cal-
culated, by replacing the continuous differences (x − ξ) and (y − η) with the discrete
variables kDx and lDy, thus

g k; lð Þ ¼ i
k

exp �i 2pk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k2Dx2 þ l2Dy2

ph i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k2Dx2 þ l2Dy2

p ð3:28Þ

with integer values k ¼ 0; 1; . . .;N � 1; l ¼ 0; 1; . . .;N � 1
The process of reconstruction into the real image plane can be written as,

C n; gð Þ ¼ =�1 = h � E�
R

� � � = gð Þ
 � ð3:29Þ

A simple Matlab© reconstruction routine perform Eq. (3.29) is shown in
Appendix C.

The Fourier transform of g(ξ,η,x,y) can be calculated and expressed analytically
[130] as,

G fx; fy
� � ¼ exp �i

2pd
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2f 2x � k2f 2y

q� �
ð3:30Þ

The spatial frequencies fx and fy can now be replaced by discrete values,

fx ¼ n
NDx

fy ¼ m
NDy

ð3:31Þ

with integer values n ¼ 0; 1; . . .;N � 1; m ¼ 0; 1; . . .;N � 1. The discrete transfer
function G now becomes
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G n;mð Þ ¼ exp �i
2pd
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kn

NDx

� �2

� km
NDy

� �2
s8<

:
9=
; ð3:32Þ

which consequently saves one Fourier transform operation in reconstruction. Thus
we now have,

C n; gð Þ ¼ =�1 = h � E�
R

� � � G
 � ð3:33Þ

To reconstruct the virtual image either a negative distance, or a lens with
transmission factor L x; yð Þ and a correction factor P n0; g0ð Þ according to Eqs. (3.6)
and (3.7) have to be taken into account. Thus, we have

C n0; g0ð Þ ¼ P n0; g0ð Þ=�1 = h � ER � Lð Þ � Gf g ð3:34Þ

The pixel spacing corresponding to the images reconstructed by the convolution
approach are equal to that of the hologram pitch, i.e.

Dn ¼ Dx; Dg ¼ Dy ð3:35Þ

The pixel separations in the reconstructed images corresponding to the convolution
approach differ from those which occur with the Fresnel approximation (Eq. 3.23).
At first sight it seems to be possible to achieve a higher resolution with the con-
volution approach if the pixel separation is small enough. However, on closer
examination we recognise that the resolution calculated by Eq. (3.35) is only a
numerical value. The physical image resolution is determined by the diffraction
limit, i.e. Eq. (3.23) and this also applies to the resolution limit corresponding to the
convolution approach.

The area reconstructed with the impulse response function defined in Eq. (3.32)
is symmetrical with respect to the optical axis. The area can be shifted by intro-
ducing the integers sk, ll,

g k þ sk; lþ slð Þ ¼ i
k

exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k þ skð Þ2Dx2 þ lþ slð Þ2Dy2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k þ skð Þ2Dx2 þ lþ slð Þ2Dy2

q ð3:36Þ

The convolution approach allows us to introduce image magnification into the
reconstruction process. This is possible if the reconstruction distance is set to

d0 ¼ d � m ð3:37Þ

where d is the recording distance (also used as the reconstruction distance) and m is
the magnification factor. A magnification of m ¼ 1 corresponds to Dn ¼ Dx, and
Dg ¼ Dy. The lens focal distance is given by the lens formula of geometrical optics:
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f ¼ 1
d
þ 1
d0

� ��1

ð3:38Þ

Now Eq. (3.34) is applied for reconstruction at a distance d′ instead of d and,
thus

L x; yð Þ ¼ exp i
p
kf

x2 þ y2
� �� �

¼ exp i
p
k

1
d
þ 1
d0

� �
x2 þ y2
� �� �

ð3:39Þ

An example of a reconstruction with the convolution approach is shown in
Fig. 3.10. The hologram of Fig. 3.4 is reconstructed with a magnification of
m ¼ 1=7. The corresponding pixel separation in the reconstructed image for Δx of
6.8 μm is given as Dn ¼ Dx=m ¼ 48 lm. This should be compared with Dn ¼
96 lm obtained using the Fresnel reconstruction (and shown in Fig. 3.5). Thus
twice as many pixels are available for the object field using the convolution
approach. However, it is emphasized again that the physical resolution is the same
in both Figs. 3.5 and 3.10.

3.2.3 Digital Fourier Holography

The special holographic recording geometry of Fig. 3.11 is known as lensless
Fourier holography. It also has been realized using digital holographic concepts

Fig. 3.10 Reconstruction
with the convolution
approach
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[245]. Here, a point source spherical reference wave is located in the plane of the
object. The reference wave at the sensor plane is therefore described by,

ER ¼
exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 þ y2ð Þp	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 þ y2ð Þp


 1
d
exp �i

2p
k
d

� �
exp �i

p
kd

x2 þ y2
� �	 
 ð3:40Þ

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 þ y2

p
is the distance between the point source and a point with

coordinates (x,y) in the sensor plane. The approximation in Eq. (3.40) is the same as
used in Sect. 3.2.1 to derive the Fresnel transform. Inserting this expression into the
reconstruction formula for the virtual image (3.17) leads to following equation,

C n; gð Þ ¼ C exp þi
p
kd

n2 þ g2
� �h i

=�1 h x; yð Þf g ð3:41Þ

where C is a complex constant. A lensless Fourier hologram is therefore recon-
structed by a Fourier transform. The spherical phase factor exp �ip=kd x2 þ y2ð Þð Þ
associated with the Fresnel transform is eliminated by the use of a spherical ref-
erence wave with the same curvature as the original. Numerical focusing into other
planes is therefore not possible using Eq. (3.41). Numerical focusing can be real-
ized, if different values of d for recording (reference wave factor ER) and recon-
struction are inserted in Eq. (3.17).

3.3 Shift and Suppression of DC-Term and Conjugate
Image

3.3.1 Suppression of the DC Term

The bright square in the centre of Fig. 3.5 is the non-diffracted reconstruction wave.
This zero order or DC term disturbs the image, because it obscures all the parts of
the object which lie behind it. Methods have been developed to suppress this term e.
g. by Kreis et al. [125].

Reference wave
source point

Object

CCD

Fig. 3.11 Digital lensless Fourier holography
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To understand the origins of this DC term, the process of hologram formation as
described by Eq. (2.60) needs to be considered again. The equation is rewritten by
inserting the definitions of ER and EO, and multiplying, to give,

Iðx; yÞ ¼ E0 x; yð Þ þ ER x; yð Þj j2
¼ a2R þ a2O þ 2aRaO cos uO � uRð Þ

ð3:42Þ

The first two terms lead to the DC term in the reconstruction process. The third
term is a cosinusoidally varying component lying between values of �2aRaO and
illuminating the pixels across the sensor. The average intensity of all pixels of the
hologram matrix is

Im ¼ 1
N2

XN�1

k¼0

XN�1

l¼0

I kDx; lDyð Þ ð3:43Þ

The term a2R þ a2O can now be suppressed by subtracting this average intensity Im
from the hologram:

I 0 kDx; lDyð Þ ¼ I kDx; lDyð Þ � Im kDx; lDyð Þ ð3:44Þ

for k ¼ 0; . . .;N � 1; l ¼ 0; . . .;N � 1.
The reconstruction of I 0 creates an image with strongly suppressed DC term. An

example of this is shown in Fig. 3.12. The upper left figure is a photograph of the
object. Reconstruction without DC term suppression is depicted in the upper right
figure. The object is covered by the DC term. The lower left figure shows recon-
struction with DC suppression included. The original object is clearly visible.

Instead of subtracting the average intensity it is also possible remove the DC
component using a high-pass filter with a low cut-off frequency as shown in the
lower right image of Fig. 3.12.

The subtraction of the average intensity from the hologram before reconstruction
is the basic objective of DC suppression. The same effect can be achieved, if two
holograms with stochastically changed speckle structures are subtracted from each
other [42]. The reconstruction of this subtraction hologram results in an image
without zero order term.

Another method of suppression is to separately capture and measure the inten-
sities of the reference wave a2R and object wave a2O. This can be done for example
by blocking one wave while monitoring the other. Afterwards a DC term free image
can be calculated by subtracting the intensities from the hologram before recon-
struction. However, this requires higher experimental effort due to the additional
measurements needed.
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3.3.2 Tilted Reference Wave

Using the recording geometry of Fig. 3.1 the real and virtual image are located at
different observation planes. During numerical reconstruction we can choose to
focus either on the real or on the virtual image. The other image is usually out-of-
focus due to the long distance between the object and sensor. Consequently only
one image is clearly visible in the reconstruction, see Fig. 3.5.

However, there are some instances where it is beneficial to laterally shift one
image with respect to the other. In this case it can be useful to record the holograms
with a tilted reference wave, as in Fig. 3.13. In this geometry the real image is
deflected from the optic axis at an angle approximately twice that of the original
reference wave.

Fig. 3.12 Suppression of the DC term (courtesy of S. Seebacher)
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The tilted reference wave is described by,

ER ¼ exp �i
2p
k
x sin h

� �
ð3:45Þ

The disadvantage of this set-up are the much higher spatial frequencies produced
at the sensor in comparison to the geometry of Fig. 3.1.

3.3.3 Phase Shifting Digital Holography

The amplitude and phase of a light wave can be reconstructed from a single
hologram by the methods described in the preceding chapters. A completely dif-
ferent approach, called Phase Shifting Digital Holography, has been proposed by
Skarman [216, 251]. He used a phase shifting algorithm to calculate the initial
phase and thus the complex amplitude in any plane, e.g. the image plane. With the
initial complex amplitude distribution in one plane the wave field in any other plane
can be determined using the Fresnel-Kirchhoff formulation. Later Phase Shifting
DH was improved and applied to opaque objects by Yamaguchi et al. [92, 255–258,
264, 265].

The basic arrangement for phase shifting DH is shown in Fig. 3.14. The object
wave and the reference wave interfere at the surface of a sensor. The reference wave
is guided via a mirror mounted on a piezoelectric transducer (PZT). With this PZT

CCD

(a)

(b)

Reference wave

Object

d

Real image

θ

Virtual image

2θ

x

θ

Fig. 3.13 Digital Holography
with a tilted reference wave.
a Recording.
b Reconstruction
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the phase of the reference wave can be shifted stepwise. Several (at least three)
interferograms with mutual phase shifts are recorded. Afterwards the object phase
uO is calculated from the phase shifted interferograms; the procedure is similar to
that of phase shifting in conventional HI (see Sect. 2.7.5). The real amplitude
aO x; yð Þ of the object wave can be extracted from the intensity by blocking the
reference wave.

As a result the complex amplitude

EO x; yð Þ ¼ aO x; yð Þ exp þiuO x; yð Þð Þ ð3:46Þ

of the object wave is determined in the recording (x,y) plane.
Now the Fresnel-Kirchhoff integral can be used to calculate the complex

amplitude in any other plane. To calculate an image of the object an artificial lens
with, for example, f ¼ d=2 is introduced in the recording plane according to
Eq. (3.6). By means of the Fresnel approximation Eq. (3.17) the complex amplitude
in the image plane is then given by

EO n0; g0ð Þ ¼ C exp þi
p
kd

n02 þ g02
� �h i

	
Z1
�1

Z1
�1

EO x; yð ÞL x; yð Þ exp �i
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

¼ C exp þ ip
kd

n02 þ g02
� �� �

	
Z1
�1

Z1
�1

EO x; yð Þ exp þi
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

ð3:47Þ
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mirror

Reference

wave

BS

d

Fig. 3.14 Phase shifting
Digital Holography, set-up
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where again the coordinate system of Fig. 3.2 applies. Since the complex amplitude
in the hologram plane is known, it is also possible to reconstruct the object by
inversion of the propagation process [206]. Propagation from the object plane to the
hologram plane is described by

EO x; yð Þ ¼ i
k

Z1
�1

Z1
�1

EO n; gð Þ
exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q dndg

¼ =�1 = EO n; gð Þð Þ � = g n; g; x; yð Þð Þf g

ð3:48Þ

with

g n; g; x; yð Þ ¼ i
k

exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q ð3:49Þ

EO n; gð Þ describes the complex amplitude of the object wave at the surface, see
Fig. 3.2. Therefore it can be calculated directly by inverting Eq. (3.46), to give,

EO n; gð Þ ¼ =�1 = EO x; yð Þð Þ
= g n; g; x; yð Þð Þ

� �
ð3:50Þ

The advantage of phase shifting Digital Holography is that it produces a
reconstructed image of the object without the presence of either the zero order term
or the conjugate image. The price for this achievement is the higher technical effort
required; phase shifted interferograms have to be generated, thereby restricting the
method to slowly varying phenomena with constant phase during the recording
cycle.

Phase shifting Digital Holography is illustrated by a holographic image of a nut,
shown in Fig. 3.15. This example demonstrates the improvement compared to
conventional Digital Holography, as shown in Fig. 3.12.

3.4 Recording of Digital Holograms

3.4.1 Image Sensors

It was the invention of the Charge-Coupled Device (CCD) at Bell Labs, and the
dramatic increase in computer storage and processing power which led to the
advent of digital holography. More recently, the Complementary Metal Oxide
Semiconductor (CMOS) has also become popular for image sensing applications
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and is gradually replacing the CCD in digital still and video cameras. Electronic
sensors like CCD or CMOS are composed of arrays of individual light sensitive
elements (pixels) which convert incident photons into an induced charge, propor-
tional to the incident intensity that can be stored or transferred through the device.
The arrays are sensitive to the spatial variance of the incident light, and are
therefore widely used in image recording. Both CCD and CMOS arrays are used in
DH. CCDs are generally available as line scanning devices, consisting of a single
line of light detectors, and as area scanning devices, consisting of a rectangular 2D
matrix of detectors; CMOS are commonly available as area devices. For Digital
Holography only the latter architecture is of interest.

To illustrate the concepts of electronic sensors we will base our discussion
around the CCD, but the principles of CMOS are broadly similar. Imaging using a
CCD sensor is performed in a three-step process [26], involving,

1. Light exposure (the incident light on each pixel is converted into charges by the
internal photo effect).

2. Charge transfer (the induced charge packets are moved through the semicon-
ductor (silicon) substrate to memory/storage cells), and,

3. Charge to voltage conversion and output amplification (the capacitor matrix of
the memory cells converts the transferred charge to a voltage; an amplifier
adapts the voltage to the output requirements).

Three basic architectures are common in CCD sensors viz. interline transfer,
frame transfer and full-frame transfer configurations respectively.

Fig. 3.15 Phase shifting
Digital Holography, example
(courtesy of S. Seebacher)
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Interline (IL) transfer devices consist of rows of light-sensitive detector elements
interleaved with rows of non-sensitive or light shielded storage elements, see
Fig. 3.16. The charge packets which are generated in the light sensitive pixels are
shifted into the adjacent storage area by a parallel clock; and are then shifted line-
by-line into a serial register. The serial register transfers the charge packages to an
amplified charge-to-voltage converter to form the output signal. The major disad-
vantage of interline transfer CCDs is their complexity, which results from sepa-
rating the photo-detecting and storage (readout) functions.

Frame-transfer (FT) CCDs also have different areas for light conversion and for
storage but are arranged into two area arrays rather than lines: a light sensitive
capture area and a shielded storage area, see Fig. 3.17. The idea is to rapidly shift a
captured scene from the photosensitive array to the storage array. The readout from
the storage register is performed similarly to the readout process of interline transfer
devices.

Full-Frame (FF) sensors have the simplest architecture, see Fig. 3.18. In contrast
to IL and FT devices there is no separate storage area. The entire sensor area is light
sensitive. The photons are converted into charge packets at each pixel and the
resulting rows of image information are then shifted in parallel to the serial register,
which subsequently shifts the row of information to the output as a serial stream of
data. The process repeats until all rows are transferred off-chip. Since the parallel
register is used for both image detection and readout, a mechanical shutter is needed
to preserve scene integrity. Full-frame sensors have highest resolution and the
production costs are comparably inexpensive.

In principle all three types of sensor are suitable for Digital Holography. Full
frame type sensors have the advantage that the exposure time can be adjusted
according to the demands of a specific application. Even exposure times in the
range of seconds are possible. However, the mechanical shutter limits the number
of holograms, which can be recorded per second (frame rate). In addition the shutter
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Fig. 3.16 Interline-transfer
architecture
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may cause mechanical vibrations to the set-up, which deteriorate the hologram
quality. An advantage of interline transfer type sensors is that they are equipped
with an electronic shutter, allowing higher frame rates. The best suited camera type
depends therefore on the specific holographic application.

In contrast to CCDs each light sensitive pixel of a CMOS sensor is equipped
with its own amplifier; i.e. the charge-to-voltage conversion is carried out at pixel
level. Each pixel can be read out individually. State-of-the-art CMOS sensors have
pixel pitches as small as 1.12 μm (see Table 3.1), which makes them an important
alternative for digital holographic applications.
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Fig. 3.17 Frame-transfer architecture
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3.4.2 Spatial Frequency Requirements

The CCD or CMOS sensor records the interference pattern resulting from super-
position of the reference wave with the waves scattered from the different object
points. In order to reduce averaging effects over the area of a pixel, the maximum
spatial frequency of the hologram should be smaller than the resolution limit
imposed by the sensor. The maximum spatial frequency that can be resolved is
determined by the maximum angle θmax between the reference wave and the waves
scattered from the different object points according to Eq. (2.30), and given by,

fmax ¼ 2
k
sin

hmax

2
ð3:51Þ

Photographic emulsions used in classical optical holography have resolutions up to
5,000 line pairs per millimetre (lp/mm). Using these materials, holograms with
beam angles of up to 180° can be recorded. However, typical pixel dimensions of
CCD/CMOS sensors are around Dx 
 5 lm. Consequently, the corresponding
maximum resolvable spatial frequency is given by

fmax ¼ 1
2Dx

ð3:52Þ

and is therefore in the range of 100 lp/mm for 5 μm pixels. Combining Eqs. (3.51)
and (3.52) leads to a maximum angle, given by

hmax ¼ 2 arcsin
k

4Dx

� �

 k

2Dx
ð3:53Þ

Table 3.1 CCD and CMOS cameras suitable for Digital Holography

Camera Chip
type

Number of
pixels

Pixel size
(μm2)

Frames
per
second

Dynamic
range

θmax for
λ = 532 nm

Roper Sci.
MegaPlus
1.4i

CCD 1,317 × 1,035 6.8 × 6.8 6.9 8 bit 2.2°

GT3300 CCD 3,296 × 2,472 5.5 × 5.5 8 /14 bit 2.8°

Duncan
DT1100

CCD 1,392 × 1,040 4.65 × 4.65 12 8 /10 bit 3.3°

DMK
72BUC02

CMOS 1,280 × 960 2.2 × 2.2 15 8 bit 6.9°

Sony
CMX081PQa

CMOS No data 1.12 × 1.12 15 No data 13.6°

a For mobile phones
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where the approximation is valid for small angles. For a recording wavelength of
532 nm and 5 μm pixels, the maximum recordable angle is about 3.0°. The pixel
size therefore limits the maximum angle between the reference and object wave.

3.4.3 Cameras for Digital Hologram Recording

The principle parameters of some selected CCD and CMOS cameras suitable for
Digital Holography are listed in Table 3.1.

The sensitivity of CCD or CMOS cameras is typically in the range of 10−4 to
10−3 J/m2, which is higher than the sensitivity of photographic emulsions used for
classical holography. The spectral response of silicon-based sensors covers the
range from approximately 400–1,000 nm. Many commercial cameras are equipped
with spectral filters to restrict the sensitivity to the visible spectrum.

In conventional holography with photographic plates the intensity ratio between
reference and object wave is normally set to be in the range of 5:1–10:1 in order to
avoid nonlinear effects due to the recording medium. However, the maximum
contrast in an interference pattern is achieved if the intensity ratio between the two
waves is 1:1. Electronic sensors have a much better linearity in the exposure curve
than photographic emulsions and consequently, a unity intensity ratio is normally
aimed for. As in classical holography the total light energy impinging on the sensor
can be controlled by varying the exposure time using a mechanical or the electronic
camera shutter.

Currently, CMOS cameras possess the highest resolution (smallest pixel size),
see Table 3.1. On the other hand CMOS cameras often have a logarithmic exposure
curve. However, this can be tolerated; the advantage of smallest pixel size is more
important. The dynamic ranges of CCD- and CMOS-devices is typically 8 bit (256
grey values) or higher. This is comparable with photographic materials and fully
sufficient for hologram recording. Even objects with brightness variations
exceeding the dynamic range of the recording medium can be stored and recon-
structed, because the object information is coded as interference pattern (hologram).

Efficient numerical reconstruction of digital holograms making use of the fast
Cooley-Tukey FFT algorithm requires a pixel number, which is a power of 2 (e.g.
1,024 × 1,024). The pixel numbers of some of the cameras listed in Table 3.1 differ
from that rule. For a pixel number of e.g. 1,317 × 1,035 (MegaPlus 1.4i) only
1,024 × 1,024 pixels are used for reconstruction. In the case of pixel number
slightly lower than a power of 2 it is advisable to add artificial pixels with grey
value zero (black) to the recorded hologram until a pixel number of 2n 	 2n is
reached. This zero padding does not distort the reconstructed image; it only causes
a smoothing or interpolation.
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3.4.4 Recording Set-ups

In this section typical arrangements used in Digital Holography are discussed with
respect to their spatial frequency limitations. In Fig. 3.19a a plane reference wave
propagates perpendicularly to the sensor. The object is located off-axis with respect
to the optic axis. This arrangement is very simple, but the space occupied by the
object is not used efficiently. The maximum angle between rays emanating from the
edge of a cubic object with sides of length L, to the opposite edge of the sensor with
sides of length NDx is (distance x shown in Fig. 3.19) is given as

hmax 
 x
dmin

¼
ffiffi
5
4

q
Lþ NDxð Þ
dmin

ð3:54Þ

The corresponding minimum object distance dmin is calculated by equating this
expression with the approximation for hmax in Eq. (3.53), and thus,
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Fig. 3.19 Recording set-ups.
Left side view; Right top view
as seen from sensor
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dmin ¼
ffiffiffi
5
4

r
2Dx
k

Lþ NDxð Þ ¼
ffiffiffi
5

p Dx
k

Lþ NDxð Þ ð3:55Þ

In Fig. 3.19b the plane reference wave is coupled into the set-up via a beam
splitter. This allows positioning the object symmetrically, i.e. objects with larger
dimensions can be recorded at a given distance d. The minimum object distance is:

dmin 
 x
hmax

¼
ffiffiffi
2

p Dx
k

Lþ NDxð Þ ð3:56Þ

However, the DC term is in the centre of the reconstructed image and has to be
suppressed by the procedures described in Sect. 3.3.1.

Figure 3.19c shows an arrangement for lensless Fourier holography. The
spherical reference wave is coupled into the set-up via a beam splitter in order to
have the source point in the object plane. The minimum object distance is:

dmin ¼
ffiffiffi
2

p Dx
k
L ð3:57Þ

In the lensless Fourier arrangement the shortest object distance can be chosen.
For all the arrangements shown, the maximum spatial frequency has to be

adapted very carefully to the resolution of the sensor. If too high a spatial frequency
occurs, the contrast of the entire hologram decreases or, in the extreme case, it
vanishes totally. In practice, suitably placed apertures, which restrict the lateral
propagation help to ensure that the spatial frequency requirements are met.

To record objects with dimensions larger than a few centimetres on a typical
sensor, the recording distance d needs to be increased up to several meters. This
may not be feasible in practice and recording arrangements are developed to
maintain object angles within a resolvable spatial frequency spectrum [180, 203].
A typical example is shown in Fig. 3.20. A diverging lens is placed between the
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Fig. 3.20 Recording geometry for large objects
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object and the target generates a de-magnified virtual image of the object at a
distance d′. The wave field emerging from this virtual image is superimposed with
the reference wave and the resulting hologram is recorded. The maximum spatial
frequency is lower than that of a hologram recorded without object reduction.

3.4.5 Stability Requirements

A stable optical set-up is necessary for digital as well as for conventional holog-
raphy. Any change in the optical path difference between the interfering beams will
result in a movement of the fringes and reduced contrast in the hologram. In
practice, the path variation should not exceed 1/4 to 1/10 of a wavelength during
hologram exposure. For holography using a continuous wave laser it is essential to
mount the optical arrangement on a vibration isolated table. For field holography, a
short duration, of the order of a few nanoseconds, pulsed laser is a better option. In
contrast to classical holography disturbances due to vibrations are visible in DH
even in the recording process: the hologram visible on the monitor of the recording
system has a low modulation or the contrast vanishes totally. This is an easy way to
monitor the stability of the set-up against vibrations.

3.4.6 Light Sources

The coherence length Lc of the light source used for off-axis holography has to be
longer than the optical path difference (OPD) between the reference and object
wave paths (measured from the beam splitter to the recording medium) for
recording of holograms. If Lc is too short the interference pattern between reference-
and object wave vanishes. In practice for most applications the use of a laser is
mandatory.

Some commonly used continuous (cw) lasers for Digital Holography and their
typical specifications are summarized in Table 3.2. The most common lasers now

Table 3.2 Selected cw lasers for Digital Holography

Laser Wavelength
(nm)

Output power Coherence length
(m)

He–Ne-laser (multi-mode) 632.8 1–50 mW 0.2

Argon-ion laser (single mode) 488/514.5 Up to several
W

Up to 100

Frequency doubled Nd:YAG-
laser

532 Up to several
W

Several 10’s

Stabilized diode laser Various 5–100 mW Up to 100
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used in DH are the frequency-double diode pumped solid state laser (FD-DPSS)
and single mode diode lasers.

The FD-DPSS is usually, but not exclusively, based on a doped-insulator crystal
such as Nd-YAG; its fundamental wavelength is 1,064 nm producing a frequency-
doubled output of 532 nm (the green part of the visible spectrum) over coherence
lengths of several tens of meters. It is available either in continuous wave mode
(cw), with output powers up to several watts, or in pulsed mode with hundreds of
millijoules output over a few nanoseconds duration and at pulse repetition rates of
up to 50 Hz. Lower energy (tens of microjoules) models are available with repe-
tition rates up to kilohertz. Flashlamp (rather than diode) pumping can produce
energies of several joules. They are rapidly replacing gas and ruby lasers as the
preferred option for classical and digital holography.

For field applications out with controlled laboratory conditions, or if moving
objects have to be recorded, a pulsed laser is necessary. Formerly ruby lasers were
commonly used. Now pulsed Nd:YAG-lasers have better characteristics with
respect to compactness, pulse stability and repetition rate.

Diode lasers are also now commonly for continuous wave applications. Single
mode operation can be achieved by stabilization electronics. Stabilized diode lasers
have long coherence lengths and sufficient output power. However, the wavelength
is not fixed by atomic transitions as for the lasers discussed above. That means it is
necessary to monitor its wavelength during operation. In addition the wavelength
depends on the temperature, typical drift is of the order of 0.2 nm/°C. On the other
hand their wavelengths are tuneable over the order of several nanometers. Tuneable
diode lasers are used for two-wavelength contouring for example.

Another interesting type of light source for DH is the superluminescent diode
(SLED or SLD). Such diodes combine the high output power of laser diodes with
the low temporal coherence of conventional LED’s. These devices are the ideal
choice, if low coherent noise but high brightness is necessary.

In the early days of holography, both classical and digital, gas lasers such as
Helium-Neon (HeNe) and argon ion were almost exclusively used for continuous
wave holography and ruby lasers for pulsed holography. The Helium-Neon
(He–Ne) laser is able to operate at several different wavelengths, but mostly
commonly the red 632.8 nm line is used. He–Ne lasers are moderately inexpensive,
the technology is mature and still found in many laboratories and schools for
educational uses of holography. When DH was in its infancy, and only sensors with
pixel sizes of about 10 µm were available, the relatively long wavelength was
advantageous, because it allowed larger angles between the interfering waves (see
Sect. 3.4.2). Unstabilized He–Ne lasers oscillate on several longitudinal modes. The
coherence length of such lasers is therefore not determined by the width of a single
mode, but by the width of the entire gain profile and is in the order of 20 cm.

The spatial coherence of the laser is also crucial in holography. Only with an
object illumination of sufficient spatial coherence it is possible to generate a scat-
tered light field with defined complex amplitude in the far field domain of the
object. The lasers discussed above usually oscillate in a single transverse mode
(TEM00) and have a Gaussian profile.
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For some special applications in microscopy, particle sizing or in shearing
interferometry the requirements on temporal coherence are lower than for off-axis
holography. In this case light emitting diodes (LED’s) can often be used. LED’s
have a spectral width of about 10 nm or, equivalently, a coherence length in the
range of 50 µm. This is sufficient if the OPD is sufficiently low. In Chap. 7 we
present some computational methods which enable sensing of low coherence wave
fields as well. This enables applications very similar to those applicable for DH,
such as numerical refocusing for example, but using low coherent light provided by
an LED.
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Chapter 4
Digital Holographic Interferometry (DHI)

4.1 General Principles

As we saw in Chap. 2, a conventional holographic interferogram recorded on
photographic film is generated by superposition of two waves, which are scattered
from an object in two different states of loading or excitation. The interferogram
carries the information about the phase change between the two waves in the form
of dark and bright lines, or interference fringes. However, the interference phase
cannot be extracted unambiguously from a single interferogram; it is usually cal-
culated from three or more phase shifted interferograms by phase shifting algo-
rithms. This requires additional experimental and processing effort.

Digital Holography allows a completely different way of processing [195]. In
each state of the object one digital hologram is recorded. Instead of superimposing
these holograms as in classical HI, the digital holograms are reconstructed sepa-
rately according to the theory presented in Chap. 3. From the resulting complex
amplitudes C1 n; gð Þ and C2 n; gð Þ the phases are obtained:

u1 n; gð Þ ¼ arctan
ImC1 n; gð Þ
ReC1 n; gð Þ ð4:1Þ

u2 n; gð Þ ¼ arctan
ImC2 n; gð Þ
ReC2 n; gð Þ ð4:2Þ

The superscripts 1 and 2 denote the first and second states of excitation,
respectively. In Eqs. (4.1) and (4.2) the phase takes values between −π and π, the
principal values of the arctan function. The interference phase is now calculated
directly by subtraction:

Du ¼ u1 � u2 if u1 �u2
u1 � u2 þ 2p if u1\u2

�
ð4:3Þ
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This equation permits the calculation of the interference phase modulo 2π
directly from the digital holograms. The generation and evaluation of an interfer-
ogram is not necessary.

The Digital HI process is shown in Fig. 4.1. The upper left and upper right
figures present two digital holograms, recorded in different states. Between the two
recordings, the knight has been tilted by a small amount. Each hologram is
reconstructed separately by a numerical Fresnel transform. The reconstructed
phases according to Eqs. (4.1) and (4.2) are depicted in the two figures of the
middle row. The phases vary randomly due to the surface roughness of the object.
Subtraction of the phases according to Eq. (4.3) results in the interference phase,
lower left figure.

The interference phase is indefinite to an additive multiple of 2π, i.e. the wrapped
modulo 2π information about the additive constant is already lost in the holographic
interferometric process. This property is not exclusive to Digital HI, but is also the
case for all interferometric methods using the wavelength as a length unit. To
convert the interference phase modulo 2π into a continuous phase distribution, one
can apply the standard phase unwrapping algorithms developed for conventional
interferometry, HI or ESPI. In this example a simple path dependent unwrapping
algorithm, as described in Sect. 2.7.6 has been applied. The unwrapped phase image
is shown in the lower right picture of Fig. 4.1. The sensitivity vector used for
hologram recording is nearly constant and perpendicular over the whole surface.
The grey values of the unwrapped phase map can be converted therefore directly
into displacement values via Eq. (2.86), i.e. the plot in the lower right picture of
Fig. 4.1 is the object displacement.

4.2 Deformation Measurement

4.2.1 Quantitative Displacement Measurement

As discussed in Sect. 4.1 the way to obtain the interference phase in DHI is totally
different from conventional HI using photographic recording media and optical
reconstruction. On the other hand, the derivation of the relationship between the
displacement vector ~d, the geometrical boundary conditions described by the sen-
sitivity vector ~S, and the interference phase Du is also valid for DHI. That means
the deformation is calculated by Eq. (2.84), which is repeated here:

Du x; yð Þ ¼ 2p
k
~d x; y; zð Þ ~b�~s

� �
¼~d x; y; zð Þ~S ð4:4Þ

As an example of quantitative displacement measurement, the deformation of a
plate due to impact loading is discussed [201, 203]. The plate is made of fibre
reinforced plastic (FRP), which is used more and more in aircraft industry. The
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Fig. 4.1 Digital holographic interferometry
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deformation behaviour of FRP under impact loading differs from that of static
loading, so impact experiments are necessary. DHI is well suited to measurement of
such transient deformations, because only one single recording is necessary in each
deformation state.

The holographic set-up is shown in Fig. 4.2. The dimensions of the plate are
12 cm × 18 cm. The recording distance would be too long for direct recording. The
spatial frequency spectrum is therefore reduced by a lens, as explained in Sect. 3.4.4
(set-up in Fig. 3.20).
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Fig. 4.2 Measurement of transient deformations
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The plate is clamped at three sides by a stable frame. A pneumatically accel-
erated steel projectile hits the plate and causes a transient deformation. Two
holograms are recorded: The first exposure takes place just before impact, when the
plate is in rest. The second hologram is recorded 5 μs after the impact. The holo-
grams are recorded by a pulsed ruby laser with a pulse duration of about 30 ns,
short enough for hologram recording of dynamic events. Recording of the second
hologram is triggered by a photoelectric barrier, which generates the start signal for
the laser after the projectile has crossed. The time interval between the impact and
the second laser pulse is adjustable by an electronic delay.

Both holograms are reconstructed separately as described in Chap. 3. The
interference phase map is then calculated by subtracting the reconstructed phase
distributions according to Eq. (4.3).

As a typical result, the interference phase modulo 2π and the unwrapped phase
are shown in Figs. 4.3 and 4.4. Since the sensitivity vector is nearly perpendicular
to the surface, the unwrapped phase corresponds to the deformation field in z-
direction 5 μs after impact.

Fig. 4.3 Interference phase
modulo 2π

18 cm

12 cm

3.5 μm

Fig. 4.4 Unwrapped phase,
corresponding to deformation
5 μs after the impact
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4.2.2 Mechanical Materials Properties

Digital holographic displacement measurement can be used to determine mechan-
ical and thermal material properties such as, Young’s modulus, the Poisson ratio
and the thermal expansion coefficient [101, 208]. For the derivation of these
quantities a procedure for the evaluation of the three-dimensional shape and the
three-dimensional displacement of the object under test, a physical model of the
behavior of the loaded object and the knowledge about the applied load are nec-
essary. The following description of such a DHI measurement procedure is partly
based on [208].

The physical model must contain one or more of the material constants as
parameters. A numerical fit into the measured data according to the physical model
delivers the wanted parameters within an accuracy that is determined by the
numerical reliability of the model. An outline of the complete evaluation process is
shown in Fig. 4.5 (DHI shape measurement is explained in Sect. 4.3).

The calculation of the above mentioned material quantities requires measure-
ment of the whole three-dimensional displacement vector field. As indicated in
Sect. 2.7, at least 3 interferograms of the same surface with linear independent
sensitivity vectors are necessary. The interferometer consists of an optimized
arrangement with 4 illumination directions and 1 observation direction to precisely
measure the 3D-displacements and coordinates, as in Fig. 4.6. The interferometer
incorporates a CCD-camera, a laser, a beam splitter cube to guide the reference
beam to the CCD target and beam shaping optics. Optionally, a fibre coupler can be
included to switch several illumination directions for varying the sensitivity vector.
Such an interferometer can be very compact in its design, Fig. 4.6. Small silicon
beams are used as test samples, Fig. 4.7.

Here we describe the use of the above DHI system to determine the Poisson ratio
of a given material. Figure 4.8a shows a typical loading machine designed espe-
cially for small objects. The small dimensions of the samples demand a precise
adjustment of all components, including the bolt which pushes against the object
from above, the support and the sample which has the shape of a small rectangular

phase data

displacement

numerical simulation, parameter evaluation

phys. model

object

phase data

coordinates

holographic 
interferometry

holographic 
contouring

Fig. 4.5 Flowchart for
evaluation of material
properties using DHI (from
[208])
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beam. In this way a homogeneous deformation is achieved. Unwanted torsions of
small magnitude are corrected numerically. This can be done easily with the use of
the modulo 2π-phase maps from Digital Holography. The resulting deformation is

l

d

ρ
CCD

illumination

reference

laser

S

Fig. 4.6 DHI set-up with four illumination directions (top) and its practical implementation
(bottom, photo BIAS)
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recorded and evaluated. The deflection produces a hyperbolic pattern in the 2π-
phase map, Fig. 4.8b. Conventionally, the Poisson ratio is derived numerically from
the angle between the asymptotic lines of the fringes of equal phase [254]. The
deformation can be formulated by the following equation to a first order
approximation:

u y; zð Þ ¼ � 1
2R

z2 þ m a2 � y2
� �� � ð4:5Þ

where u describes the deformation in the x-direction at a position (y,z) on the
surface of the object, ν is the Poisson ratio, R is the radius of curvature and a is a
constant parameter. Equation (4.5) shows that the upper and lower surface of the
sample are deformed to parabolic curves where the inside is bent in a convex profile
and the outside is concave. Since this analytical model contains the Poisson ratio as
a parameter it is possible to use the measured deformation for its evaluation. This is
performed numerically by approximating the model to the data (Fig. 4.8c) with a
least-square-fit, Fig. 4.8d.

The reproducibility and accuracy of the values obtained by this method is good
in comparison to conventional optical techniques for small samples. Table 4.1
contains some of the results for beams made of spring steel, structural steel and
titanium. The values correlate with the values given by the manufacturers within the
tolerances of the material batches.

Young’s modulus can be determined in a similar way to the Poisson ratio if the
physical model contains this quantity as a parameter. Small silicon beams are
clamped at one edge and mechanically loaded at the opposite edge with a defined
force. The 3D-surface displacement (u,v,w) (Fig. 4.9c) can be measured with the
interferometer by evaluating at least 3 interferograms (Fig. 4.9b) made with dif-
ferent illumination directions. A model of the beam bending containing the
Young’s modulus E as a free parameter is the basis for a numerical fit of the
experimental values:

Fig. 4.7 Test samples made on 100 mm diameter silicon wafer. The size of the quadratic structure
is 9 mm × 9 mm, the thickness of the components is between 10 and 40 μm (photos BIAS)
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Fig. 4.8 Measurement of the poisson ratio by DHI (from [208]). a Schematic experimental set-up.
b Reconstructed mod 2π-phase map. c Unwrapped phase field. d Approximated function
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u yð Þ ¼ Fl3

6EIy
2� 3

y
l
þ y3

l3

	 

ð4:6Þ

where u is the displacement in x-direction and y is a position on the beam of the
length l. Iy is the axial moment of inertia in the (x,z)-plane that can be estimated
with the help of a shape measurement and F is the force applied to the tip of the
beam. The applied forces are relatively small so that a special loading mechanism
was developed, Fig. 4.9a. The spring constant k is assumed to be known precisely
as is the displacement Δa = a − a′. With this information the force can be evaluated
from

F ¼ kDa ð4:7Þ

The experiments with thin beams made of silicon (dimensions: length 3 mm,
width 1 mm) delivered an average value of E = 162 MPa. The literature value (in
the considered crystal direction) is typically about 166 MPa, but can vary widely
depending to the material’s history, treatment and degree of impurity.

4.2.3 Thermal Materials Properties

DHI is applied also to measure of the thermal properties of a material, e.g. its
thermal expansion coefficient [101, 208]. For interferometric investigations of
thermal behavior thermal turbulence and non-uniform temperature distributions
should be avoided. Therefore a vacuum chamber is used that can be supplied with
adapted loading devices, Fig. 4.10a. The thermal loading device is capable of
keeping a constant temperature within an accuracy of 0.02 °C in a range of about
20 °C up to 180 °C, Fig. 4.10b. The digital holographic interferometer is mounted
outside at the observation window of the chamber, Fig. 4.10c.

Table 4.1 Measured poisson ratios compared with literature values (after [208])

Material Width
(mm)

Thickness
(mm)

Length
(mm)

Poisson ratio
measured

Poisson ratio
literature

Spring
steel

1.20 0.20 12.0 0.288 0.29–0.31

Spring
steel

2.00 0.10 12.0 0.301 0.29–0.31

Structural
steel

1.00 0.50 10.0 0.338 0.29–0.31

Structural
steel

1.50 0.50 10.0 0.345 0.29–0.31

Titanium 2.00 0.80 10.0 0.359 0.361

Titanium 1.00 0.80 10.0 0.381 0.361
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Fig. 4.9 Determination of Young’s modulus by DHI (from [208]). a Working principle of the
loading mechanism for the small samples. b four 2-phase maps recorded from four different
illumination directions. c Deformation calculated in cartesian coordinates (scale of the plots in
μm). d Profile of the deformation in x-direction
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A mono-crystal silicon beam (Fig. 4.10d) with a phosphor coating is used as a
test object. The interferograms are recorded at various temperature differences. The
complete evaluation process can be summarized as follows:

• 4 holograms are recorded with the object in its initial state
• the object is loaded thermally and recorded holographically from four different

illumination directions

y

z
x

(a)

(d)(c)

(b)

Fig. 4.10 Determination of the thermal expansion coefficient by DHI (photos BIAS). a Vacuum
chamber with the supply channel. b Equipment for thermal loading. c Interferometer mounted on
the inspection window. d Coordinate system used for the calculation of the thermal expansion
coefficient
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• the displacement vector components (u,v,w) are calculated based on the eval-
uation of the four 2π-phase maps

• rigid body motions are separated from internal deformations of the object itself
by subtracting the mean movement from the displacement values.

• the absolute length change ΔL is determined as well as the total length of the
beam which can be performed by using the imaging properties of Digital
Holography.

• The thermal expansion coefficient in y- and z-direction can simply be calculated
by using the equation

a ¼ DL
L0DT

ð4:8Þ

However, the extension in the x-direction is too small to be detected with this
method.

As an example, the thermal expansion coefficient α of a 2 mm × 9 mm × 100 μm
mono-crystal silicon beam was measured. Figure 4.11 shows the four resulting
2π-phase maps. The applied temperature difference ΔT is 30 °C. After elimination of
the rigid body motion the three deformation components are evaluated as shown in
Fig. 4.12. When the beam dimensions are taken into account a value of about
α= 2.92× 10−6 1/K is obtained. Literature values vary over awide range due to different
measurement methods, conditions and material batches: α = 2.4–6.7 × 10−6 1/K.

4.2.4 Non-destructive Testing

Non-Destructive Testing (NDT) is a generic term used to describe any method of
measuring or testing materials, components and structures without damaging them
in any way. Some of the most common NDT techniques used in industry include,

(a) (b)

(d)(c)

Fig. 4.11 2π-phase maps due to deformation by thermal loading, four different illumination
directions. a Illumination direction 1. b Illumination direction 2. c Illumination direction 3.
d Illumination direction 4
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ultrasonics, eddy currents, dye-penetrants testing, X-rays and, importantly in this
context optical methods like HI, ESPI and shearography.

Holographic Non-Destructive Testing (HNDT) measures the deformation due to
mechanical or thermal loading of a specimen. Flaws inside the material create a
surface deformation which is detected as an inhomogeneity in the holographic
fringe pattern.

HNDT can be used wherever the presence of a structural weakness results in a
characteristic surface deformation of the stressed component. The load can be
realized by the application of a mechanical force or by a change in pressure or
temperature. Holographic NDT indicates deformations down to the submicrometer
range, so loading amplitudes far below any damage threshold are sufficient to
produce detectable fringe patterns.

In HNDT it is sufficient to have one fringe pattern of the surface under inves-
tigation. Quantitative evaluation of the displacement vector field is usually not
required. The fringe pattern is evaluated qualitatively by an observer or, more

0μm

0,04μm9mm

2mm

(a)

(b)

0μm

0,25μm9mm

2mm

0μm

0,1μm9mm

2mm

(c)

Fig. 4.12 3D-displacement
vector components (u,v,w) of
thermally loaded object. a u-
component. b v-component.
c w-component
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frequently, by fringe analysis computer codes. Irregularities in the interference
pattern are indicators of flaws within the component under investigation.

As discussed in the preceding chapters, DHI does not generate a fringe pattern,
but instead directly produces an interference phase map from which any flaws can
be determined.

To illustrate the processes of DHI NDT, we describe testing of a pressure vessel
[202] as those used as gas tanks in satellites, see Fig. 4.13. The diameter of the
vessel is in the order of 1 or 2 m and the thickness of the wall is only about 1 mm.
Typical flaws to be detected are cracks or reduced thickness of the wall.

The surface of the tank is divided into segments of about 5 cm × 5 cm. For each
segment, a series of digital holograms is recorded. Between the exposures, the
pressure inside the tank is varied by a few hundred hPa. As a typical result the
interference phase between one pair of holograms is shown in Fig. 4.14. The
disturbance in the middle is an indication of a flaw. The interference phase can also
be converted into a continuous phase by unwrapping the 2π-jumps. However, for
flaw detection the unwrapped phase map is often more suitable.

Fig. 4.13 Satellite tank
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In conventional holographic NDT the load applied to the object under investi-
gation is restricted to a certain limit. Loads above this limit produce such high
fringe densities that they are unresolvable. In numerical reconstruction in DHI, the
phase difference between any pair of exposures can be calculated. Even if the total
deformation between the first and the last hologram is too large for direct evalua-
tion, the total phase difference can be calculated stepwise as the sum of the indi-
vidual phase changes:

Dutotal ¼ Du1!2 þ Du2!3 þ Du3!4 þ � � � ð4:9Þ

However, a drawback of DHI compared to conventional HI should be empha-
sized: For visual flaw detection it is sometimes an advantage to continuously vary
(dynamic evaluation) the observation direction. This is possible for holograms
recorded on a photographic plate with dimensions of about 10 cm × 10 cm or more,
but until now not possible for digital holograms recorded on sensors with typically
only about 1 cm × 1 cm area. However, future progress in camera technology and
computer hardware may solve this problem.

Fig. 4.14 Non-destructive
testing by DHI
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4.3 Shape Measurement

4.3.1 Two-Illumination-Point Method

The two contouring techniques discussed in Sect. 2.7.3 for conventional HI are also
applied in DHI.

For the Two-Illumination-Point method it is necessary to record two digital
holograms of the same surface, but from different object illumination points. Both
holograms are reconstructed separately. The interference phase map, which repre-
sents the object shape, is then calculated by subtracting the individual phase dis-
tributions according to Eq. (4.3). The result is a wrapped phase map, which is
interpreted similar to the contour fringe pattern discussed in Sect. 2.7.3. The phase
change between two adjacent 2π-jumps is

Du ¼ 2p
k
~p~s ð4:10Þ

with~p and~s as defined previously. By analogy with Eq. (2.96) the distance between
two adjacent 2π-jumps is

DH ¼ k

2 sin h
2

ð4:11Þ

where θ is the angle between the two illumination directions.
DHI two-illumination-point contouring can be carried out with for example the

set-up depicted in Fig. 4.15. Optical fibres are preferably used to guide the illu-
mination wave. The output at fibre face is the illumination source point. The shift is
realized by e.g. a motor driven translation stage. The first digital hologram is
recorded with the fibre end at position S. For the second hologram the fibre is
shifted slightly to position S′.

CCD

Laser

S

S'

ObjectFig. 4.15 Two-illumination
point DHI
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In order to obtain maximum sensitivity in a direction normal to the surface,
illumination should come from the side, i.e. the angle between illumination
direction and observation direction is near 90°. Yet, such a flat illumination may
cause shadows due to surface variations. The optimum illumination direction is
therefore always a compromise between maximum sensitivity and minimum
shadows in the reconstructed images.

4.3.2 Two- and Multi-wavelength Method

For shape measurement by the two-wavelength method two holograms are recorded
with different wavelengths λ1 and λ2. In conventional HI both holograms are
recorded on a single photographic plate. Both holograms are reconstructed by the
same wavelength, e.g. λ1. That is why two images of the object are generated. The
image recorded and reconstructed by λ1 is an exact duplicate of the original object
surface. The image which has been recorded with λ2, but reconstructed with λ1 is
slightly shifted in towards the observer, (see imaging equations in Sect. 2.6.2) with
respect to the original surface. The two reconstructed images interfere.

The concept of two-wavelength contouring has also been introduced into Digital
Holography [103, 196, 207]. Two holograms are recorded with λ1 and λ2 and stored
electronically, e.g. with the set-up depicted in Fig. 4.16. In contrast to conventional
HI using photographic plates, both holograms can be reconstructed separately by
the correct wavelengths according to the theory of Chap. 3. From the resulting
complex amplitudes Ck1 n; gð Þ and Ck2 n; gð Þ the phases are calculated:

uk1 n; gð Þ ¼ arctan
ImCk1 n; gð Þ
ReCk1 n; gð Þ ð4:12Þ

CCD

fibre coupler

λ1 λ2

Fig. 4.16 Two-wavelength
DHI
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uk2 n; gð Þ ¼ arctan
ImCk2 n; gð Þ
ReCk2 n; gð Þ ð4:13Þ

As in deformation analysis the phase difference is now calculated directly by
subtraction:

Du ¼ uk1 � uk2 ifuk1 �uk2
uk1 � uk2 þ 2p ifuk1\uk2

�
ð4:14Þ

This phase map is equivalent to the phase distribution of a hologram recorded with
the synthetic wavelength Λ. In conventional two-wavelength contouring the distance
between adjacent fringes corresponds to a height step of Λ/2, see Eq. (2.90). Similarly
in two-wavelength DHI a 2π phase jump corresponds to a height step of Λ/2:

DH ¼ k1k2
2 k1 � k2j j ¼

K
2

ð4:15Þ

A typical example of two-wavelength contouring is shown in Fig. 4.17.
In DHI contouring both holograms are reconstructed with the correct wave-

length. Distortions resulting from hologram reconstruction with a different wave-
length from the recording wavelength, as in conventional HI contouring, are
therefore avoided.

A modified contouring approach, which is referred to as multiwavelength con-
touring, needs more than two illumination wavelengths to eliminate ambiguities
inherent to modulo 2π phase distributions [111, 112, 172, 246]. The advantage of
this technique is that it can also be used with objects that have phase steps or
isolated object areas.

An example of a set-up for shape measurement of small objects is shown in
Fig. 4.18 [52]. Contouring of small objects is useful e.g. in manufacturing control of
electronic components or to monitor the growth of living biological samples.

A long-distance microscope objective (LDM) with a magnification of M = 10
and a numerical aperture of NA = 0.28 is used to image the sample. The working

unwrapped 1mm

Fig. 4.17 Shape registration of a cylindrical lens by two-wavelength contouring. Visible part:
3 mm × 2 mm
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distance is 33 mm, so that the optical fibre for object illumination can be mounted
between the LDM and the sample. The CCD-sensor has 2,048 by 2,048 pixels with
a pixel pitch of 3.45 µm and is placed in a distance d behind the image. This offers
enough space to insert the beam splitter, which is necessary to superimpose the
reference wave. The CCD records therefore a hologram generated by a defocussed
image and the reference wave. The object image can be reconstructed with the
convolution approach as described in Sect. 3.2.2.

A tunable dye-laser is used as light source. For contouring, two holograms are
recorded at two wavelengths λ1 = 580 nm and λ2 = 583 nm. The synthetic wave-
length according to Eq. (2.90) is therefore Λ = 112 μm. The holograms are
reconstructed and a phase image with contour lines is calculated. The object illu-
mination angle chosen here is α = 20° with respect to the optical axis. With this
angle α, it is possible to calculate a quantitative height profile from the phase map.
Please note: the derivation in Sect. 2.7.3 is based on perpendicular illumination
(α = 0°), but the theory can be generalized to arbitrary angles.

As an example the surface profile of a small detail from a 2 € coin is measured,
see Fig. 4.19. The phase distribution from the marked detail in Fig. 4.19a is shown
in Fig. 4.19b. A principal drawback of two-wavelength holographic contouring is
the speckle decorrelation noise due to the different wavelengths. This leads to an
uncertainty in the phase determination. This effect is visible in the marked rectangle
of Fig. 4.19b: The phase information is nearly lost. A reduction of noise due to
speckle decorrelation can be achieved by averaging the phase maps from several
holograms, which are recorded with different illumination directions. This is

Fig. 4.18 Holographic
microscope for shape
measurement of small objects
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indicated in Fig. 4.19c, where the average phase distribution obtained from three
illumination directions provides information even in the area marked by the rect-
angle. The surface profile of the coin after unwrapping is shown in Fig. 4.19d.

4.3.3 Hierarchical Phase Unwrapping

As stated earlier the process of phase unwrapping is always the same for con-
ventional HI as well as for DHI and in general also for all methods which generate
modulo 2π images. In Sect. 2.7.6 a simple phase unwrapping method is described.

Fig. 4.19 Holographic microscope for shape measurement of small objects. a Photograph of a 2
Euro coin. b Phase distribution, calculated from a hologram with single illumination direction.
c Average phase distribution obtained from three illumination directions. d Surface profile after
unwrapping. The arrows indicate the projected directions of illumination
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However, for DHI multiwavelength contouring a special unwrapping procedure
named hierarchical phase unwrapping is useful. The basic idea of this technique
was originally developed by Nadeborn and Osten for projected fringe techniques
with incoherent light [159, 169], but it is applicable for all measurement techniques
which generate periodic data. Hierarchical phase unwrapping is particularly well
suited in conjunction with DHI multi-wavelength contouring. The technique is
discussed in this context.

The practical application of interferometric contouring techniques can lead to the
following problems [206]:

• Fringe counting problem: The interference phases are periodic. For the Two-
Wavelength method the periodic length is half the synthetic wavelength, see
Eq. (4.15). If edges, holes, jumps or other discontinuations are on the measured
surface, it is often not possible to count the absolute interference order or phase
value. An unambiguous evaluation is not possible. In order to generate unam-
biguous results, it is therefore necessary to use a synthetic wavelength greater
than twice the maximum height variation of the object. But this causes the
second problem:

• Noise problem: The synthetic wavelength has to be adapted to the largest height
jump in order to generate unambiguous phase values over the entire surface. The
measurement of smaller height profiles with the same synthetic wavelength
leads to larger phase noise compared to a wavelength well adapted to the profile.
To measure the surface profile of an object with about 10 mm height variations,
a synthetic wavelength of at least Λ = 20 mm is necessary. In practice the phase
noise limits the achievable measurement resolution to about 1/10 of the wave-
length; i.e. the accuracy of the measured height data is only 2 mm. This is too
low if smaller height jumps of only 1 mm are measured.

The basic idea of hierarchical phase unwrapping is to start with a large synthetic
wavelength to avoid phase ambiguities [246]. This measurement is not very
accurate due to noise. The accuracy is now improved by systematic reduction of the
synthetic wavelengths, while the information of the preceding measurements is
used to eliminate ambiguities.

The procedure starts with a synthetic wavelength Λ1, which is larger than twice
the maximum height variation of the object. The height at a certain position is then
given by

z1 ¼ K1

2
Du1

2p
ð4:16Þ

where Du1 is the measured interference phase at this position. This result is
unambiguous, but has low accuracy. Now the synthetic wavelength is reduced to Λ2

and a new phase measurement is made. The resulting height coordinate
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ẑ2 ¼ K2

2
Du2

2p
ð4:17Þ

is not unambiguous, this is indicated by the “^”. In the next step the difference
between the result of the first measurement z1 and the second measurement ẑ2 is
calculated:

Dz ¼ z1 � ẑ2 ð4:18Þ

Furthermore which multiple of the periodic length Λ2/2 is contained in the
difference Δz (rounded number) is also calculated

N ¼ floor 2
Dz
K2

þ 0:5
	 


ð4:19Þ

The function f(x) = floor(x) delivers the maximum integer value, which is smaller
than x. The correct result of the second measurement is now:

z2 ¼ ẑ2 þ K2

2
N ð4:20Þ

This result is unambiguous as well as z1, but it has a better accuracy compared to
z1 due to the smaller synthetic wavelength. The procedure is continued with smaller
wavelengths as long as the resolution is below a desired value. After n iterations we
arrive at:

zn ¼ ẑn þ Kn

2
floor 2

zn�1 � ẑn
Kn

þ 0:5
	 


ð4:21Þ

In practice the number of measurements to reach the desired resolution should be
as small as possible. This minimum or optimum number depends on the noise. Let
ɛn be the inaccuracy in a measurement using the synthetic wavelength Λn. The true
height coordinate ztrue lies within an interval limited by

zmax ¼ zmeas þ en
2
Kn

2

zmin ¼ zmeas � en
2
Kn

2

ð4:22Þ

where zmeas is the value determined by the measurement. Then the next measure-
ment with Λn+1 takes place. The inaccuracy of this measurement is given by ɛn+1.
Now the noise of the nth and the (n + 1)th measurement is considered for estimating
the interval limits of the true height coordinate:
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zmax ¼ zmeas þ en
2
Kn

2
þ enþ1

2
Knþ1

2

zmin ¼ zmeas � en
2
Kn

2
� enþ1

2
Knþ1

2

ð4:23Þ

The difference between the maximum possible and the minimum possible height
coordinate is:

zmax � zminj j ¼ en
Kn

2
þ enþ1

Knþ1

2
ð4:24Þ

A correct recovery of the absolute height coordinate is only possible, if following
condition is satisfied for the (n + 1)th measurement:

Knþ1

2
� zmax � zminj j ð4:25Þ

A smaller value for Λn+1/2 than |zmax − zmin| would lead to ambiguities, because
ẑnþ1 þ NKnþ1=2 as well as ẑnþ1 þ N þ 1ð ÞKnþ1=2 are possible height values within
the interval limits. The optimum period (half synthetic wavelength) is achieved for
the equals sign.

The combination of Eqs. (4.24) and (4.25) with the equals sign results to:

Knþ1 ¼ Kn
en

1� enþ1
ð4:26Þ

This condition determines the optimum choice of the sequence of synthetic
wavelengths depending on each measurement’s accuracy.

4.4 Measurement of Refractive Index Variations

Digital HI is also used to measure refractive index variations within transparent
media, e.g. with the set-up of Fig. 4.20. The expanded laser beam is divided into
reference and object beam. The object beam passes the transparent phase object and
illuminates the CCD. The reference beam impinges directly on the CCD. Both
beams interfere and the hologram is digitally recorded. The set-up is very similar to
a conventional Mach-Zehnder interferometer. The difference is that the interference
figure here is interpreted as a hologram, which can be reconstructed with the theory
of Chap. 3. Therefore all features of Digital Holography like direct access to the
phase or numerical re-focussing are available.

Just like for deformation analysis two digital holograms are recorded: The first
exposure takes place before, and the second after the refractive index change. These
digital holograms are reconstructed numerically. From the resulting complex
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amplitudes Γ1(ξ, η) and Γ2(ξ, η) the phases are calculated by Eqs. (4.1) and (4.2).
Finally the interference phase is calculated by subtraction according to Eq. (4.3).

In the reconstruction of holograms recorded by the set-up of Fig. 4.20 the non-
diffracted reference wave, the real image and the virtual image are lie on the same
axis. The images overlap, which causes distortion. The non-diffracted reference
wave can be suppressed by filtering with the methods discussed in Sect. 3.3.1. The
overlapping of the unwanted twin image (either the virtual image if one focuses on
the real image or vice versa) can be avoided by slightly tilting the reference wave,
as discussed in Sect. 3.3.2. In this case the images are spatially separated.

The interferometer of Fig. 4.20 is sensitive to local disturbances due to imper-
fections in optical components or dust particles. The influence of these disturbances
can be minimized if a diffusing screen is placed in front of, or behind the phase
object. In this case the unfocused twin image appears only as a diffuse background

Phase
object

CCD

Laser
Fig. 4.20 DHI set-up for
transparent phase objects

Fig. 4.21 Wrapped phase of
a liquid system
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in the images, which does not disturb the evaluation. If a diffuser is introduced no
additional tilting of the reference wave is necessary for image separation. A dis-
advantage of using a diffuser is the generation of speckle due to the rough surface.

In Fig. 4.21 a typical phase difference image (modulo 2π) of a transparent phase
object is shown. The holograms are recorded with the set-up of Fig. 4.20 (without
diffuser). The object volume consists of a droplet of toluene, which is introduced
into the liquid phase water/acetone. The refractive index changes are caused by a
concentration gradient, which is induced by the mass transfer of acetone into the
droplet.
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Chapter 5
Digital Holographic Particle Sizing
and Microscopy

5.1 Introduction

While much of this book concentrates on the use of digital holography for vibration
and stress analysis, contouring and metrology, the emphasis in this chapter is on the
unique image forming characteristics of the hologram. Holography is inherently a
high-resolution imaging system, and when coupled with its non-intrusive and non-
destructive character and its preservation of parallax and perspective information of
the original scene, it is ideally suited for observation, identification and mensuration
of microscopic-sized particles, organisms and cell biology.

Following Gabor’s original idea of a “wave-reconstruction microscope” in 1947
[68], Maiman’s demonstration of the first working laser in 1960 [151] and its
incorporation into holography in 1963 [142], holographic microscopy became a
reality (but not quite in the form Gabor intended). It was recognised that holography
was a powerful method for recording high-resolution images of microscopic
organisms and particles, in three dimensions and in their natural environment.
Because individual planes of the image can be spatially isolated (optically sec-
tioned) by selective focusing of the reconstructed image, precise analysis and
measurement of size, shape, distribution and concentration of microscopic particles
is obtainable.

Applications quickly followed and holography was applied to sizing of air-borne
particles [239], holographic microscopy in biomedical imaging [43], identification
and distribution of marine organisms and floc in the water column [85, 117], and
deployment from aircraft [242], to name but a few. Holographic cameras (“holo-
cameras”) were soon designed for deployment in laboratories, industrial plants and
in inhospitable environments such as in space or subsea [24, 104, 118, 248]. These
first-generation holocameras utilised, of course, “classical” analogue holography
with recording on photosensitive silver halide emulsions coated on glass or film.
They were bulky, heavy and difficult to manoeuver, however, with wet-chemical
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processing of the photographic emulsions followed by precision reconstruction in
dedicated laboratory facilities.

With the major advances in electronic image sensors towards the end of the 20th
century coupled with parallel improvements in computer processing power and
storage, digital holographic (DH) recording with numerical reconstruction by
computer became a realistic possibility [198, 261]. Many of the advantages of
classical holography still applied to DH, but now with the addition of rapid capture
and storage, freedom from wet chemical processing, and, importantly, the ability to
capture holographic videos (“holovideos”) of moving objects which allowed the
preservation of temporal as well as spatial dimensions. It is this ability to record true
3D, full-field, high-resolution, distortion free in situ images from which particle
dimensions, distribution and dynamics can be extracted that sets digital holography
apart from the other imaging methods and make it so useful for particle sizing and
microscopy.

The concepts and techniques of particle sizing and imaging using classical
holographic recording on photographic light-sensitive emulsions are well-docu-
mented in the literature, see e.g. [79, 240, 244]. Many of these concepts are equally
applicable and relevant to digital holographic recording on electronic sensor arrays.
We saw in previous chapters that in DH, the interference field is stored directly in
computer memory and digitised in accordance with the pixel spacing of the elec-
tronic sensor. The holographic image is reconstructed by numerical simulation of
the propagation of the optical field through space; planar sections of the image can
be individually reconstructed on the computer monitor at any distance from the
hologram plane, and in any time frame. This is analogous to refocusing the image
plane in conventional microscopy, thereby allowing the size, shape, relative loca-
tion, identification and distribution of particles to be extracted. Since reconstruction
does not require a dedicated optical reconstruction facility, algorithms can readily
include specialist techniques such as dark-field, phase reconstruction, and pre- and
post-processing. Importantly, in DH the phase of the wavefield as well as its
intensity is retained on reconstruction.

5.2 Recording and Replay Conditions

For digital holographic particle sizing, the ‘in-line’ (or ‘on-axis’) Fraunhofer mode
(ILH) mode of recording is generally the favoured method of recording by virtue of
its geometric simplicity, and consequently its lower cost and potentially high res-
olution. Because of the much higher sensitivity of electronic sensors compared with
holographic photosensitive film, low-power continuous-wave (c.w.) lasers can be
used for illumination. In many field applications though, pulsed lasers are often a
better choice, particularly if the subject is fast-moving or subject to vibration, or the
holocamera cannot be held steady with respect to the target. The depth-of-field in
ILH is not strongly constrained by the laser coherence (since object and reference
beams travel similar paths) and the main limitation is the reduction in resolution
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with distance from the sensor (this will be discussed in more detail later in this
chapter). No lenses need be involved in image formation but can be used with
advantage in some variations of the geometry to increase the magnification of the
reconstructed images; the stability and accuracy of the sensor geometry provides in-
built calibration.

5.2.1 In-line Recording

Digital holograms of particle distributions within a semi-transparent sample volume
can be recorded with the in-line set-up depicted in Fig. 5.1. The basic digital ILH
geometry employs a single collimated laser beam (a plane wave) directed through
the semi-transparent sample volume towards the electronic sensor. The sensor is
usually a 2D array such as a CCD (charge coupled device) or complementary metal
oxide semiconductor (CMOS) device. Optical interference at the sensor plane
occurs between light diffracted by the particles and the undiffracted (straight
through) portion of the illuminating beam. An overall scene transparency of around
60–80 % is needed so that enough light reaches the sensor to record holograms with
a good signal-to-noise ratio.

In particle sizing applications, the objects of interest may range in size from a
few micrometres to a few millimetres, and we have to distinguish between
recording the object in the “far-field” (a Fraunhofer hologram) or in the “near-field”
(a Fresnel hologram) with respect to the sensor plane. It is normally assumed
that the crossover between these two regimes occurs at a distance given by the
“Fraunhofer far-field condition”. A spherical particle of diameter 2a is deemed to be
in the far-field if it is located in a plane, z0, of object-space such that the distance
between it and the sensor is given by

z0 � zF ¼ 2að Þ2
k

ð5:1Þ

Particles

Sensor 

Collimated recording laser beam 

Fig. 5.1 Recording geometry
for in-line holography of
small particles
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where zF is the Fraunhofer far-field distance and λ is the illuminating wavelength. In
practice, it is assumed that if the particle lies between about 1 and 100 far-fields
from the sensor then good recording of the diffraction pattern (the well-known Airy
disc) will be obtained (see Thompson [239]). This will result in a diffraction pattern
of the particle at the sensor which will be unaltered in shape with distance but will
increase in size the further it is away from the sensor. This distance we can call the
“Fraunhofer range”. For a 100 µm particle recorded at a wavelength of 532 nm, the
sensor should lie between approximately 19 mm and 1.9 m from the object; but for
a 1 µm target, the Fraunhofer range reduces to between 1.9 and 190 µm. Beyond
100 far-fields fringe contrast decreases to a level such that good recording is
unattainable. For an object of 1 mm size, the minimum far-field distance stretches to
nearly 2 m; if we do image in these conditions we have created a Fresnel diffraction
pattern (near-field). Different Fresnel patterns are recorded at different distances
from the sensor; however, the use of a suitable reconstruction algorithm will still
allow focusing of particles. In laboratory implementations of classical holography,
relay lenses are often employed to reduce the space implications and to increase
image magnification (see Thompson [239]).

Images of any plane in the recording volume at specific distances from the
sensor can be recreated and high-resolution dimensional measurement extracted
from them. In ILH, only outlines of the original object are seen (if it is non-
transparent) and because the sensor area is small the images have almost no par-
allax. If the beam diameter is larger than the sensor, objects located outside the
direct sampling volume can contribute to the interference. The replay geometry of a
classical ILH and the location of the images obtained are shown in Fig. 5.2. Two
images are reconstructed: one between the sensor and the laser (the primary or
virtual image) and one in front of the sensor between it and the observer (the
secondary or real image), and at the original recording distance. Of course in digital
replay we only reconstruct in one plane at a time: an image of a particular plane is
viewed on a computer monitor and represents the virtual or the real image
depending on the image distance which is fed to the computer algorithm. An out-
of-focus conjugate image background is always present whichever image is
reconstructed: the two images are optically indistinguishable from each other. From

 

Reconstructed virtual image of particles

Reconstructed real image of particles  

Viewing camera 

Particle image 
on monitor 

Fig. 5.2 Replay geometry of a classical in-line hologram
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the diagram we can see that the real image is “pseudoscopic” i.e. the image is
reversed back-to-front and right-to-left but of course this makes no difference to the
computer reconstruction.

5.2.2 Off-axis Recording

To record large, opaque or dense aggregates of particles, the off-axis holographic
mode (OAH), also known as side-reference beam or twin beam, is more suitable.
Because the recorded subjects are generally larger than in in-line, the far-field
condition is not usually satisfied and these are classified as Fresnel holograms. The
geometry is more complex since it involves front or side illumination of the subject
with a separate off-axis (angular) reference beam. The laser beam is amplitude
divided using a beam-splitter into two beams that travel different paths to the sensor
(see Figs. 2.10 and 4.20). One beam, the reference, is directed onto the sensor
without impinging on the object; the second beam, the object beam, is used to
illuminate the scene to be recorded (the object beam may be further subdivided to
illuminate from a variety of directions) and it is the scattered or reflected light which
arrives at the hologram plane and interferes with the reference beam. A major
advantage of the off-axis mode is the angular separation of the reference and object
beams. On classical replay we can select virtual or real image reconstruction of the
scene by choice of reference beam parameters and angular orientation. In classical
holography the reference beam is usually incident on the hologram film at an
oblique angle of as much as 60°. However, in DH because of the smaller pixel
dimensions of electronic sensors (up to 2 or 3 µm for CMOS compared with grain
sizes of 30 nm or so with holographic film, see Table 3.1) the reference beam angle
is restricted to 10° or less (or even at virtually zero angles).

Off-axis recording configurations are commonly used in Holographic Particle
Image Velocimetry (HPIV) and Holographic Microscopy, outlined later in this
chapter.

5.2.3 Image Resolution

The computer algorithms that we saw earlier being applied to digital holography
(see Chap. 3) are equally applicable to, and suitable for high-resolution imaging
applications like particle sizing. Both the Fresnel approximation and the convolu-
tion algorithms (several variations such as the “angular spectrum” method bear a
close resemblance to the convolution approach and produce similar results) render
the Fresnel-Kirchhoff equation more amenable for digitisation and computer
implementation [28, 130]. No matter which approach is used, the intensity and
phase distribution of the wavefield at any plane in the reconstructed volume of the
hologram is recreated, thereby simulating the effect of traversing an image sensor or
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refocusing of the image plane through an optically replayed hologram, but with the
added advantage that phase information can also be extracted, if needed. The main
differences between the methods are in the speed of processing, scaling of the
reconstructed images and their applicability to ILH or OAH recording.

An important feature of the Fresnel approximation (Sect. 3.2) is that the extent of
the reconstructed image (effective ξ′ − η′ dimensions in the image plane) increases
with distance from the sensor. Accordingly, the sampling interval at the recon-
structed plane also needs to increase with distance from the hologram thereby
reducing the effective image resolution in the image plane. The direct in-line portion
of the reconstructed image occupies fewer pixels as the reconstruction distance
increases, and is surrounded on all sides by any components which are outside the
zero-order beam path (straight through). The consequence of this is that as recon-
struction extends further from the hologram plane, the effective pixel pitch increases,
covering a larger area in image-space. For N square pixels of dimension Δx in the
x- and y-directions the required sampling interval is given by (see Eq. 3.23)

Dn ¼ kzi
NDx

ð5:2Þ

where zi is the image-sensor distance and NΔx is the approximate overall dimension
of the sensor.

A pyramidal volume is reconstructed extending out from the hologram, but the
resolution approaches that given by Eq. (5.2). This behaviour is similar to that of a
classical imaging system employing a lens, except that in the holographic case, the
viewing angle is dependent on the maximum spatial frequency of the sensor and
hence the maximum beam angle that can be recorded by the sensor (off-axis).
Diffraction-limited resolution of a holographic real image, in the absence of all
aberrations, is usually defined as the ability to distinguish two points in the image
plane separated by a distance r in the transverse plane normal to the optic axis and
is given by, for example, Born and Wolf [16],

r ¼ 1:22zi
k
D

ð5:3Þ

where D is the diameter of the aperture. Save for the constant factor (1.22), the
similarity between Eqs. (5.2) and (5.3) is apparent. We can interpret Δξ as being
equivalent to the diffraction limited resolution of the system in the transverse plane
(equivalent to r). For square pixels of 3 µm dimension, N of 1,024, a wavelength of
532 nm and zi of 100mm,Δξ is about 17.5 µm.Note also, though, that as we approach
a resolution equal to that of the pixel spacing, the (Nyquist) sampling theorem will
come into play. From it we can deduce that the best achievable resolution can be no
better than twice the pixel dimension, i.e. 6 µm in this case. Given these character-
istics, the Fresnel approximation lends itself more to the reconstruction of off-axis
holograms or in-line holograms with a significant number of particles/points which
are outside the extent of the zero-order area (see also the discussion in Sect. 3.2.2).
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For in-line holography of microscopic particles it is preferable that the pixel
scale be maintained over long path lengths so as to allow for easy comparison of
images between planes by reconstructing only the in-line portion of the hologram at
each plane of interest. Using the angular spectrum [130] or convolution approach
(Sect. 3.2.2), the number of sample points, and the spatial sampling interval (pixel
pitch) is unchanged regardless of reconstruction distance zi; however, the algorithm
will only reconstruct components within the confines of the zero-order term. Once
again though we must take the sampling theorem into account so again our best
resolution is 2Δx. For reconstruction of collimated beam in-line holograms, the
spatial sampling interval used in the algorithm is equivalent to the detector pixel
spacing and on reconstruction the same pixel spacing is maintained, such that
according to Eq. (3.35)

Dn ¼ Dx ð5:4Þ

This would appear to indicate that we could achieve a higher resolution using this
approach, however, the Fresnel approximation reconstructs to the physical dif-
fraction limit of the system and therefore the convolution approach provides only an
apparent increase in resolution. It is still the diffraction-limited resolution (Eq. 5.2)
that defines system performance.

There are another few advantages to the convolution approach: firstly unwanted
frequencies may be eliminated after transformation to its spectrum and before the
image is reconstructed [48]. A second advantage is that because there is no practical
minimum reconstruction distance imposed before the algorithm breaks down, it
therefore allows the entire hologram volume to be scanned [152].

The sensor, whether it is photographic or electronic, must be able to record the
interference pattern resulting from the hologram: thus the pixel dimensions and the
overall extent of the sensor have a great bearing on imaging capabilities. We saw
from Eq. (3.53), that the maximum recording beam angle (in radians) for an off-axis
hologram is given as

hmax � k
2Dx

ð5:5Þ

Even with the best (current) available sensor of 1.4 µm pixels, the maximum
recording angle for digital holography is restricted to about 11° with a consequent
restriction in the field-of-view, compared with angles of 45° and more with classical
off-axis recording on photofilm (see also Table 3.1). To record a moving particle a
rule of thumb often applied is that the object must not move by more than one-tenth
of its diameter during the exposure. Thus for a 10 µm particle moving at 1 ms−1, we
would need a maximum exposure duration of about 1 µs.

For off-axis holograms the presence of speckle introduced by the coherence of
the light and the finite aperture of the viewing system sets a lower limit to the
achievable resolving power of the system. In practice, the minimum resolving
power is increased by a factor of two to three to take this into account.
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5.2.4 Holographic Depth-of-Field and Depth-of-Focus

The terms depth-of-field and depth-of-focus are well-known concepts in imaging
optics, but can be misunderstood and often used interchangeably. In conventional
imaging with a lens, field-depth is usually taken to mean the axial range in object-
space over which an image of a scene provides acceptable resolution in a given
image-plane. The depth-of-focus, by contrast, is the corresponding axial range in
image-space over which the object scene is deemed to be in acceptable focus. For a
camera lens focused at its hyperfocal distance, the depth-of-field essentially stret-
ches from the closest focusing distance to infinity. In lens-based microscopy the
recordable depth-of-field is restricted to about k

�
NA2 for a spherical particle (NA is

the numerical aperture of the lens) [81]; for a microscope objective of 0.1 NA, the
depth-of-field is about 50 µm at a wavelength of 500 nm and the focus depth is of
the order of 100 µm or so. When we contrast this with holography the situation
changes dramatically, and we have to redefine the concepts slightly.

One useful measure in holography we can apply is the “Fraunhofer range”
discussed earlier (Sect. 5.2.1). This we can interpret as the depth-of-scene in object-
space over which any particles can be recorded and still fulfil the Fraunhofer
condition. From our previous argument we can see that this is effectively the range
between 1 and 100 far-field distances of the object.

For 100 µm particles recorded at 532 nm, the Fraunhofer range is about 1.9 m.
This distance would normally exceed any laser to sensor path length in a typical
holocamera.

A more realistic measure of depth-of-field is obtained by defining it in terms of
the axial range in object-space where a particle of a given diameter could be located
and still be reconstructed at its conjugate image plane with acceptable resolution.
Here we assume recording and replay at the same wavelength with a collimated
reference beam, and that z0 ¼ zi. In this situation a generally applied rule-of-thumb
is that for “good” recording of the diffraction pattern of a spherical particle so that it
can be reconstructed at an acceptable image resolution, the sensor must be large
enough to capture the central maximum of the Airy profile plus 3 side-lobes.
Following the treatment of Thompson [239] or Hariharan [79], and assuming a
circular occlusion (i.e. particle) of diameter 2a and including a factor of 4 to
account for the side-lobes, we can write Eq. (5.3) in terms of the radius out to the
third side-lobe as

rmax � 4z0
k
2a

ð5:6Þ

Interpreting rmax as the radius of the sensor needed to capture three side-lobes of the
diffraction pattern of the particle, we can see that the distance, Δz0, in object-space
over which a good image in the above sense can be recorded is
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Dzo � 2að Þrmax

4k
¼ do ð5:7Þ

This we can interpret as the depth-of-field. For the previous 100 µm particle and a
sensor radius of 6 mm, the depth-of-field is about 280 mm. Contrast this with the
depth-of-field obtainable using conventional microscopy. This we can interpret as
the axial range in object-space over which a particle of a given diameter can be
located and still provide a good image in the corresponding image plane.

However, since in holographic microscopy and sizing, we reconstruct particles at
specific planes throughout the image-space, the separation between individually
selectable planes is important: this is governed by the focus depth over which the
image provides an acceptable resolution. The depth-of-focus, therefore, for an in-line
hologram can be defined as the axial distance in image-space over which an image of
a small particle located in object-space at a plane, zo is formed at a distance zi, and
possesses acceptable resolution; in other words it represents the maximum defo-
cusing distance from the exact diffraction limited image of a point-source. As we
have seen before for a particle of diameter 2a, an image of radius r will be formed at
a distance z0 ¼ zi from the sensor in accordance with the Airy disc formulation. As
we move the reconstruction plane axially towards or away from the sensor, the peak
intensity of the central maximum will fall. Using another rule-of-thumb we assume
that for a point source in a diffraction-limited system 80 % of light energy stays
within the Airy spot when the image is defocused by ±δI/2. Following the treatments
of Vikram [244], Meng and Hussain [156] or, Born and Wolf [16] we can write the
total focusing distance around the image plane as,

dI � k
z
r

� �2
ð5:8Þ

and substitute for r into the Airy disc formulation [Eq. (5.3)] to arrive at

dI � 2að Þ2
k

Depth-of-Focus ð5:9Þ

as an approximate expression for the image depth over which resolution can be
maintained (which is of the same order of magnitude as the far-field distance). For a
100 µm particle, the amount of defocus is about 19 mm. We can interpret this as the
distance in image-space over which, on reconstruction, the diffraction pattern
begins to be recognisable as a particle, through its best focus and on until it is just
recognisable again.

We should note though that the above relationships are based on the assumption
of recording small spherical particles in diffraction-limited systems. Focus depth is
the range over which spherical particles appear to be same size as the original. In
many DH systems the targets are much more complex and irregular, such as subsea
plankton (see later in chapter) and in such systems focus depth relates more to the
smallest desired resolvable feature e.g. hairs on a copepod.
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5.2.5 Optical Aberrations

The usefulness of holography for accurate inspection, dimensional measurement
and particle sizing is dependent on its ability to reproduce an image of a subject
which is both low in optical aberrations and high in image resolution over a large
depth-of-field. Resolution, contrast and noise are the dominant factors in a holo-
graphic image for particle measurement and identification, rather than brightness. In
practice, image degradation can occur at any stage in the recording and replay of a
hologram. All the primary monochromatic aberrations found in any optical system
(spherical aberration, astigmatism, coma, distortion and field curvature) may be
seen in a holographic image (see Sect. 2.6.2). Meier [155] developed a series of
relationships which allowed the magnitude of the primary aberration coefficients to
be calculated for holographic recording of point sources; these were later extended
to non-paraxial imaging by Champagne [27], Latta [139] and others. Many optical
ray tracing simulation programs now allow for the evaluation of aberrations in
holography.

From the Meier relationships (see Eqs. 2.64–2.73) we see that the coefficients of
spherical aberration, coma, astigmatism, field curvature and distortion can all be
defined in terms of the location of the object and reference sources, the beam
curvatures and the recording and replay wavelengths. Analysis of these relation-
ships shows that aberration-free optical reconstruction (of the virtual image) can
only be obtained if the hologram is replayed by an exact replica of the original
reference wave, in terms of its curvature, wavelength and beam coordinates. For
optical reconstruction of the real image, replay should be accomplished using an
exact phase conjugate of the recording reference wave (same wavelength, opposite
divergence and opposite direction); then the lateral, longitudinal and angular
magnifications of the real image will all equal unity and aberrations will be reduced
to a minimum (see Sect 2.6.2). In any case, because in ILH the object and refer-
ences beams travel roughly collinear paths the dominant aberration is spherical and
the others can be generally ignored.

In digital holography, aberration compensation can be added to the recon-
struction algorithms and its application to several different classes of digital holo-
gram recording geometry can be seen in Claus et al. [30].

5.3 Data Processing and Autofocusing of Holographic
Images

A recurring issue in all forms of holographic recording (digital or classical) of
microscopic particles, and one which imposes limits on the wider use of the
technique, is extracting, processing and analysing the vast amount of data contained
in the hologram. Although analysis can be performed by manual scanning of the
reconstructions, this is tedious and time-consuming, and requires high levels of
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concentration; automatic interrogation of the data is essential for all practical
applications of the technique.

Since a single holovideo may contain as much as several gigabytes of data, a first
step in interpretation of digital holograms and holovideos of particles often involves
localising every particle within a frame (in x,y,z,t), and distilling particle shape and
positional information from it. This facilitates application-specific processing, with
subsequent image recognition, particle tracking, counting and sizing. For each
video frame, the hologram is reconstructed in incremental steps and an image of
each slice parallel to the sensor plane is sequentially obtained. This is equivalent to
discretised simulation of the wave-field projected into real image space by an
analogue hologram when reconstructed by an optical beam. When a particle
coincides with a reconstruction plane it will appear in-focus, and is characterised by
a maximisation of image gradients at the particle edges.

Several methods of focus detection in DH have been implemented and reported in
the literature; a non-exhaustive list includes self-entropy [115], amplitude analysis
[49], Fresnelet-sparsity [144], “l-1” norms [145], and gradient measurement [21,
186, 194]. Focus detection is typically the first step in hologram analysis and with
suitable software, particle identification can be carried out on focused particle
images and 3D plots of relative position and distribution produced [153, 178, 221].
Most of these algorithms implement optimal-focus metrics which depend variously
on image intensity gradient, variance, correlation, histograms and frequency-domain
analysis. These metrics all rely on the premise that focused images have higher
information content than blurred (out-of-focus) images due to the existence of larger
gradients with higher variance across them. This leads to a greater deviation between
maxima and minima in the brightness histogram and the local maximisation of
power in higher frequency components when the image is transformed to the fre-
quency-domain. Due to speckle in the hologram an algorithm with good noise
immunity is required. One such algorithm is the contour gradient algorithm [22, 249]
which has been used to analyse a number of holographic videos recorded in the
North Sea (see Sect. 5.4.6). Figure 5.3 shows a hologram frame recorded on a
10.5 µm pixel pitch, and the associated contour outputs generated for the frame;
three particles found in a single frame are shown. This algorithm achieves maximum
noise immunity by constraining gradient measurements to particle edges.

5.4 Some Applications in Imaging and Particle Sizing

Having established the fundamental properties of high resolution imaging for
particle sizing we can now outline some of the more common applications of the
technology. Firstly, though, a note on terminology: in all of the applications out-
lined here, we are dealing with microscopic particles ranging in size from a few
micrometres to a few millimetres and all such uses of digital holography for particle
sizing at micrometre scale can be considered as digital holographic microscopy
(DHM). The term, however is commonly used to describe its use in applications
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synonymous with conventional microscopy, such as for biomedical imaging of cell
tissues. In this section we will restrict the term digital holographic microscopy
(DHM) to this type of system. Furthermore many applications are now concerned
with movement of particles and measurement of velocity vectors and this type of
system could also be considered as a variation of Holographic Particle Image
Velocimetry (HPIV).

5.4.1 Particle Sizing

The pioneering work in particle sizing was accomplished by Thompson (see [239])
and co-workers in the 1960s. The work of Thompson and others utilised the con-
cepts of in-line Fraunhofer recording, the basics of which were previously outlined
earlier in this chapter. The general geometry of Fig. 5.1 was used to record holo-
grams of air-borne particles. Later an imaging device known as a “disdrometer” was
developed for the measurement of the size of fog droplets down to about 4 µm
dimension. In this system use was made of a telescope imaging system which
relayed a magnified image of a plane to the holographic film thereby providing an
increase in effective resolution.

Many workers have since applied digital Fraunhofer ILH to sizing of atmo-
spheric particles. Figure 5.4 shows a digital hologram of atmospheric particles and

Fig. 5.3 Images of reconstructed particles using contours to locate them in a holovideo
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its reconstruction in a PC at reconstruction distances of 105.5, 123.2 and 141.7 mm
from the sensor plane [191].

5.4.2 Digital Holographic Microscopy (DHM)

In DHM, illumination is commonly accomplished by replacing the collimated ref-
erence beam by a divergent beam (Fig. 5.5). Utilising this geometry can increase the
magnification of the image, with an apparent improvement in resolution; but this is at
the expense of a reduced sampling volume. In Fig. 5.5 the incident beam is focused
through a pinhole and diverges onto the sensor a distance R away from the pinhole.

Hologram (d = 0.0 m) d = 0.1055 m

d = 0.1232 m d = 0.1417 m

Fig. 5.4 A hologram of in-
situ atmospheric particles
(upper left); the other images
are reconstructions of the
hologram at distances of
105.5, 123.2 and 141.7 mm
respectively from the sensor
plane (courtesy of Raupach
[191])

R

Z

Fig. 5.5 Divergent beam
recording
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Reconstruction is required only over a small fraction 1
�
M2 of the hologram area,

where M is the magnification factor Z/R, and Z is the reconstruction distance [156].
As the reconstruction plane is moved closer to the centre of divergence of the
recording beam the reconstruction area decreases with an apparent improvement in
spatial resolution; this apparent increase in resolution comes at the expense of
recording volume. This scheme is used in several of the subsea holocameras that
have been developed. Digital Holographic Microscopes often utilise off-axis
recording to enable their use in either transmission or reflection [43].

As we saw earlier, the depth-of-field of an imaging system decreases with
increasing magnification (see Born and Wolf [16]). In conventional microscopy the
depth-of-field is therefore limited by the high degree of magnification that is often
needed. Investigation of a three dimensional object with microscopic resolution
requires continual refocusing of the image plane to maintain the resolution over the
depth of the object. Digital Holography facilitates focusing at different object
planes. In addition, the images are free of optical aberrations brought about by
imperfections of optical lenses in the image formation path. Fundamental work in
Digital Holographic Microscopy (DHM) and its application to measurement of
micro-mechanical systems has been carried out by several workers [31, 78, 107]
and DHM is further finding increasing application in biology and medicine [43,
108, 114, 226].

The majority of biological samples are transparent or semi-transparent. For such
specimens phase contrast is of particular importance. Conventionally phase contrast
images are generated only with the special technique of phase contrast microscopy.
With DHM phase images are available directly as a result of the numerical
reconstruction process.

In order to obtain a high lateral resolution in the reconstructed image the object
should be placed near to the electronic image sensor (see Chap. 3). The necessary
distance to obtain a given resolution Δξ′ with the Fresnel approximation can be
estimated using Eq. (3.23 or 5.2), i.e.

Dn0 ¼ kd0

NDx
ð5:10Þ

As before, the prime denotes parameters in the reconstruction plane (in holographic
microscopy, the reconstruction distance d′ may be different from the recording
distance d). For a pixel size of 10 µm, a wavelength of 500 nm, 1,000 pixels in the
x-plane and a desired resolution of Δξ′ = 1 μm, a reconstruction distance d′ of 2 cm
is necessary. At such short distances the Fresnel approximation is no longer valid
and the convolution approach to reconstruction is more appropriate. However, the
resolution of an image derived from the convolution method approximates to that of
the pixel dimensions of the sensor (see Eq. 5.2); in this case about 10 µm, which is
too low for microscopy. Therefore the reconstruction procedure has to be modified.

The lateral magnification of the holographic reconstruction can be derived from
the holographic imaging equations (see Sect. 2.6.2). According to Eq. (2.70) the
lateral magnification of the reconstructed virtual image is:
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M ¼ 1þ d
d0r

k1
k2

� d
dr

� ��1

ð5:11Þ

where dr and dr′ describe the distances between the point source of a spherical
reference wave and the hologram plane in the recording and reconstruction process,
the recording and reconstruction wavelengths are λ1 and λ2 respectively. The
reconstruction distance d′ i.e. the position of the reconstructed image, can be re-
written as,

d0 ¼ 1
d0r

þ k2
k1

1
d
� 1
dr

k2
k1

� ��1

ð5:12Þ

If the same reference wavefront is used for recording and reconstruction it follows
that d′ = d (note that d, d′, dr and dr′ are always counted positive in this book).

Magnification can be introduced by changing the wavelength or the position of
the point source of the reference wave in the reconstruction process. If the desired
magnification factor is determined, the reconstruction distance can be calculated by
a combination of Eqs. (5.11) and (5.12) with λ1 set equal to λ2, so that,

d0 ¼ d �M ð5:13Þ

To enlarge the image, the source of the reference wave needs to be placed at a
distance

d0r ¼
1
d0

� 1
d
þ 1
dr

� ��1

ð5:14Þ

The reference wave can now be described by,

ERðx; yÞ ¼ exp �i
2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0r

2 þ x� x0r
� 	2 þ y� y0r

� 	2q
 �
ð5:15Þ

where x0r; y
0
r;�d0r

� 	
is the position of the reference source point in the reconstruction

process.
A simple set-up for digital holographic microscopy is shown in Fig. 5.6. The

object is illuminated in transmission and the spherical reference wave is coupled
into the set-up via a semi-transparent mirror. Reference and object waves are guided
via optical fibres. For weak scattering objects the external reference wave can be
blocked and a conventional in-line configuration used. A digital hologram of a test
target recorded using this set-up is shown in Fig. 5.7a. The corresponding intensity
reconstruction is depicted in Fig. 5.7b. The resolution obtained corresponds to
about Group 4, element 3 (about 2.2 µm).

Depeursinge [43] shows two more complex DHM configurations currently being
used for biomedical cell studies; one based on transmission microscopy and the
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other on reflection techniques. Figure 5.8a shows a transmission scheme and
Fig. 5.8b shows a DHM in reflection mode.

5.4.3 Holographic Tomography

As indicated earlier, the focused image depth of an in-line hologram can be of the
order of tens of millimetres and makes the localisation of particles difficult in the
replayed image. Particle localization along the optical axis is only possible within a
defined range given by Eq. (5.10). Adams et al. [5] and Kreis et al. [127] showed
that improved particle localization could be obtained by, for example, combining
DH with tomographic methods. The following description is based on that of
Adams et al. [5]. In tomography several projections in different directions through a
scene are recorded. The three-dimensional distribution of the physical quantity, e.g.
the attenuation of a beam passing the scene, is then calculated by numerical
methods. To record simultaneous multiple in-line holograms of the particle stream

Laser

CCD

fiber coupler

object

Fig. 5.6 Basic digital holographic microscope layout

Fig. 5.7 Hologram of resolution target and its numerical reconstruction (recorded in system
similar to Fig. 5.6)
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from different directions an arrangement using a single sensor array is used, (see
Fig. 5.9). After passing the particles a first time, the collimated beam of a ruby laser
is guided by two mirrors through a second pass and by two further mirrors through

HWP

HWP
HWP

Reference beam 
path

PBS

Object beam path 

Transmissive
object

Collimating 
and focusing 
optics Sensor

Sensor

Collimating 
and focusing 
optics

Microscope 

objective

Mirror

Mirror

Mirror

Mirror

Laser beam 

Microscope 
objective

Microscope 
objective

Reflective object

Reference beam path

Object beam path

PBS

PBS

PBS

HWP

(a) (b)

Fig. 5.8 Transmission (a) and reflection (b) digital holographic microscope configurations
(adapted from [43]). PBS and HWP represent polarizing beam splitters and half-wave plates,
respectively

laser

CCD-sensor
mirror

mirror

mirror

mirror

Fig. 5.9 Experimental set-up for recording in-line holograms from several directions with one
CCD-sensor and deconvoluted lightpath (from [5])
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a third pass along the stream before reaching the sensor. The lower part of Fig. 5.9
shows schematically the effective location of the mirrors and the deconvoluted light
path. Now it is possible to extract the three views of the particles by three recon-
structions with numerical focusing to the different planes at 40, 65.5 and 95.5 cm
from the sensor.

Particles with a size of 250 µm were distributed randomly throughout the vol-
ume. The CCD sensor comprised an array of 2,048 × 2,048 light-sensitive pixels
with a pitch of 9 µm × 9 µm. The diffraction rings of each particle can be seen in the
in-line holograms (Fig. 5.10). In addition to the diffraction rings caused by the
particles, the image overlaps with a pattern produced by the recording system itself.
On reconstruction, the particles are visible as dark spots without any diffraction
rings. The missing diffraction rings or halos show that the particles are recon-
structed at the correct distance. The measured average particle diameter is 28 pixels,
corresponding to about 250 µm.

The three reconstructed images show the particle stream from different direc-
tions. To gain a three-dimensional particle distribution from these images, a

Fig. 5.10 In-line hologram, recorded with the set-up of Fig. 5.9 (upper left). The other images show
reconstructed particle distributions at a distances of 40, 65.5 and 95.5 cm, respectively (from [5])
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tomographic method is applied, (Fig. 5.11). From every image in Fig. 5.9 a line is
drawn back to the hologram, and from these three lines a two-dimensional profile
through the particle stream is calculated with a method based on the filtered back
projection approach of tomography. If this method is applied for all lines in the
reconstructed images, a full three-dimensional distribution of the particles is
achieved. The three back projections of one particle must be in one plane. In the
crossing of the three stripes a particle is reconstructed. The stripes arise from the
low number of views used in the tomographic evaluation. With increasing number
of views the stripes begin to disappear.

5.4.4 Phase Shifting DHM

Digital Holography can also be combined with conventional microscopy using high
aperture lenses as imaging devices. Such a set-up for investigating samples in
transmission is shown in Fig. 5.12. A light beam is coupled into a Mach-Zehnder
interferometer. The sample to be investigated (the object) is mounted in one arm of
the interferometer. It is imaged onto the CCD/CMOS sensor by a microscope
objective (MO). A second objective is mounted in the reference arm in order to
form a reference wavefront with the same curvature. Both partial waves interfere at
the CCD target. An image of the sample superimposed by a coherent background
(reference wave) is formed onto the CCD target.

A set of phase-shifted images is recorded [255, 256]. The phase shift is realized,
for example, using a piezoelectric transducer (PZT) in the reference arm of the
interferometer. From these phase shifted images the complex amplitude of the
object wavefront in the image plane can be calculated as described in Sect. 3.3.3.

Fig. 5.11 Principle of tomography. From the existing images single lines are taken and combined
to a two-dimensional distribution by methods of tomography. Right two-dimensional distribution
gained from three different views. In the crossing of the stripes a particle is found (from [5])
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Numerical refocusing into any other object plane is now possible using the Fresnel-
Kirchhoff integral.

A few slightly different methods are described in the literature. An off-axis
recording geometry can be realized, if both beams are slightly tilted with respect to
each other. In this case phase shifting is not necessary to calculate the initial phase.
The algorithms described in Sect. 3.2 can be used directly to calculate the complex
amplitude in other planes. Similar set-ups to that depicted in Fig. 5.12 have been
used for recording of holograms in reflection.

The quality of images recorded with coherent light is in general worse than those
recorded with incoherent light due to coherent noise. Dubois et al. [47] developed
therefore a phase shifting digital holographic microscope with an ordinary LED as
light source. The image quality improves (less speckle noise) due to the reduced
spatial coherence of that light source compared to images generated by a laser.

5.4.5 Particle Image Velocimetry (PIV)

Another important area where DH is beginning to play a major role is in fluid
dynamics where currently particle image velocimetry (PIV) is the favoured method
of flow visualization to obtain instantaneous velocity fields and measurements. In
traditional PIV, the fluid is “seeded” with tracer particles which, for sufficiently
small particles, are assumed to flow with the general streamlines of the fluid. The
seeded fluid is illuminated with a sheet of laser light to make the particles visible to
the detector system. The lightsheet is viewed normal to the fluid flow with a digital
camera and dedicated software applied to visualize the vector maps.

The key element that digital holographic PIV (D-HPIV) brings is the ability to
capture the velocity field in all three spatial dimensions and also with the added
bonus of the time dimension. The intensity field is interrogated using 3D cross-
correlation techniques to yield the velocity field. Importantly in-line holography

Light Source

BS

BSMO

MO

Sample

CCD

PZT

M

Fig. 5.12 Phase-shifting DHM with image plane recording
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utilises forward scattered light, rather than side scattered light as used in conven-
tional PIV, to increase the sensitivity of the method by a few orders of magnitude
[10, 83, 213]. An excellent overview of HPIV is given in a Special Issue of
Measurement Science and Technology of 2003 [84].

Meng et al. [157] outline a variety of potential effects which can degrade the
quality of digital HPIV information. However we should note that many of these
effects are not confined solely to HPIV but apply to holographic particle sizing in
general. Such factors include the assumption that the recorded particles are small
and spherical, and the influence of speckle which reduces the signal-to-noise ratio
of particle images. Furthermore noise can also be introduced through impurities in
the scattering medium, such as temperature variations and window blemishes. The
combination of these factors increases the complexity of the correlation process.

5.4.6 Underwater Digital Holography

When the concepts of DH are applied underwater, we have an imaging technique
which affords marine scientists the opportunity to study the aquatic environment in
a way never before possible. Knox’s seminal paper in 1966 [117] acted as the
catalyst for the growth of holography in marine science. It sparked the development
of a series of submersible holocameras which were deployed in the oceans around
the world. These early holocameras demonstrated the potential of holography for
imaging and measurement of marine and freshwater organisms and particles down
to a few micrometres dimension. However, these holocameras were bulky, heavy
and difficult to manoeuvre from ships or operate from remotely operated vehicles
(ROVs); and deployment was restricted to a few hundred metres below the surface.
Furthermore, the holograms needed wet-chemical processing and the consequent
reconstruction in a dedicated replay facility. While impressive images were
obtained by these systems, the time-consuming and laborious data extraction pro-
cedures limited the amount of meaningful scientific results that were obtained.
Furthermore, the gradual withdrawal of holographic materials from the market
place led to the near demise of classical holography.

The dramatic improvement in electronic sensor arrays, availability of more
compact lasers and the vast increase in computer power since the late 1990s led
inevitably to the development of the first submersible digital holographic camera; by
Owen and Zozulya [176] in 2000. It was based on the standard in-line Fraunhofer
geometry shown in Fig. 5.1. It utilised a 10 mW continuous wave (c.w.) diode laser
in an in-line configuration onto a CCD array over a maximum 25 cm path length.
The use of a c.w. laser can be justified on the grounds that the enhanced sensitivity of
electronic sensors over photofilm reduces exposure times to about 100 µs. However,
this still limits application to slowly moving systems. This holocamera was suc-
cessfully deployed in the field in Tampa Bay, Florida to depths of about 50 m.

Since this pioneering holocamera, several workers world-wide e.g. [97, 165,
214, 227, 228] have exploited DH for underwater environmental science, and
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submersible digital holocameras are now becoming commercially available [210].
Although these systems share common elements such as use of the in-line geometry
and, usually, charge-coupled device (CCD) arrays, there are subtle differences
amongst them relating to their application and deployment method. Many were
developed primarily for phytoplankton studies over sampling volumes of around
1 mm3

–1 cm3; and primarily low particle velocities. In most underwater applica-
tions, the objects (or the camera) are in motion during the exposure. The effect of
this motion is to blur the finer fringes, and thus reduce resolution and contrast.
In-plane motion is the most severe case, and adopting the experimentally-verified
criterion that the maximum allowable motion is less than one-tenth of the minimum
required fringe spacing of the smallest object, then for in-line holograms the
maximum object motion must be less than one-tenth of the object’s dimension. For
particles of 10 µm dimension, and a typical Q-switched YAG laser pulse duration
of 10 ns, a transverse velocity of up to 100 ms−1 can be tolerated. Off-axis holo-
grams are more demanding in their requirements and the maximum allowed
velocity is reduced by about an order of magnitude. This is, however, more than
adequate for most field applications of the technique. When optical holograms are
recorded in water and replayed in air, the refractive index mismatch between
recording and replay spaces will cause the aberrations to increase. In ILH, only
spherical aberration is significant since the object and reference beams travel very
similar paths. However, in OAH astigmatism and coma dominate and both increase
with the field angle of the subject in the reconstructed image. These limit resolution
and introduce uncertainty in co-ordinate location. Furthermore, the water itself may
be expected to influence the quality of the images produced. An increase in the
overall turbidity of the water will adversely affect both in-line and off-axis tech-
niques and would be expected to create a background noise that will reduce image
fidelity.

One practical solution, unique to holography, compensates for the change of
effective wavelength of light as it passes through water, by allowing a deliberate
mismatch of recording and replay reference beams to off-set the refractive index
mismatch [109, 110]. For holograms recorded and replayed in air, a usual pre-
requisite is that the reconstruction wavelength is the same as that used in recording.
From the dependence of wavelength on the refractive index, n, we can apply the
more general condition that it is the ratio λ/n that must remain constant. This
relationship suggests that a hologram, immersed in water and recorded at a specific
in-air wavelength will produce an aberration-free image in air (provided of course
that the rest of the Meier conditions are complied with) when replayed at a
reconstruction wavelength which is itself equivalent to the effective wavelength of
light when passing through water. For example, if a green laser (532 nm) is used in
recording in water, the ideal replay wavelength in air is around 400 nm (i.e. 532 nm
divided by 1.33, the refractive index of water). However, complete correction
assumes that the entire recording system is located in water; but since this is
impractical, holograms are usually recorded with the holographic sensor behind a
glass window. The additional glass and air paths affect the compensation of
aberrations. However, third-order aberration theory (e.g. [81]) shows that if the
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window-to-air path length ratio is appropriately chosen for a specific replay
wavelength, then aberration balancing will occur and residual aberrations are
reduced to a minimum over a wide range of field angles and object locations. This
behaviour can also be simulated using an optical ray-trace or optical design pro-
gram. However, here again the advantages of DH come to the fore: the whole
process of aberration compensation can be accomplished by incorporating it into
the reconstruction algorithms.

The eHoloCam system was developed at the University of Aberdeen [114, 157]
and differs from most other digital holocameras in using a pulsed frequency-dou-
bled Nd-YAG laser to freeze any motion in fast moving objects. Holograms are
recorded on a high-resolution CMOS sensor to record water volumes of around
36 cm3 at video frame rates between 5 and 25 Hz. eHoloCam and its internal layout
is shown in Fig. 5.13. It comprises of two water-tight housings. One housing
(724 mm length by 330 mm diameter) contains the laser, on- board computer, two
320 GB SATA hard drives and beam forming optics. The laser is a pulsed fre-
quency-doubled Nd-YAG laser operating at 532 nm, with 1 mJ per pulse over a
4 ns duration and pulse repetition rate up to 25 Hz. Another housing (170 mm
length by 100 mm diameter) contains a 10.50 mm × 7.73 mm area CMOS sensor
with 2,208 × 3,000 square pixels of 3.5 µm dimension. The system was pressure-
tested and certified to operate to a depth of 1.8 km (18 MPa water pressure). The
light path in-water between the windows is 45 cm giving a recording volume of
about 36 cm3 of the water column in a single hologram.

eHoloCam was deployed in the North Sea from the RV Scotia (Marine Scotland
Science, Marine Laboratory, Aberdeen) on four cruises covering 1 year (December
2005, April, July and December 2006). It was operated from a sampling frame
“Auto-Recording Instrumented Environmental Sampler, Marine Scotland Science,
Aberdeen” (ARIES) and towed at up to 4 knots to depths of 450 m. Several hundred

Fig. 5.13 eHolocam showing sensor housing (left), main housing (right) with beam path
highlighted
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holovideos were recorded over the complete season of dives. The CMOS camera is
operable in different pixel configurations to offer control of resolution, frame rate
and video-size. In high-resolution mode, the full array of 2,208 × 3,000, 3.5 μm
square pixels is addressed at a 5.3 Hz frame rate giving a total recording of 255
frames in 48 s. In medium-resolution mode, the effective pixel size is 7.0 μm
(1,500 × 1,104 pixels) at 17.3 Hz over 1,172 frames in 68 s. In low-resolution
mode, the effective pixel size is 10.5 μm square (1,000 × 736 pixels) at 24.3 Hz in
110 s with 2,627 frames captured. The recording durations were calculated from the
desirable video buffer size (around 2 GB). A series of holovideos, were recorded in
each dive following a sequence of high, medium and low-resolution. As many as
five sequences were carried out giving up to 15 separate videos per dive.

Hologram frames were manually reconstructed using the angular spectrum
algorithm (prior to the incorporation of autofocusing) and images extracted from the
recorded e-holovideos. Here, we present some examples of the reconstructed

(c)(b)(a)

(e)(d)

Fig. 5.14 Reconstructions (at different scales) of digital holograms recorded in the North Sea
using eHoloCam; a chaetoganatha, about 4 mm long, b a fragment of jelly fish larvae, body length
about 2.5 mm, c a phytoplankton chain, about 500 µm long, d and e calenoid copepods of about
2.5 mm body length
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images (Fig. 5.14) from several dives over different seasons; the types of plankton,
their population density and behavioural characteristics varied significantly between
seasons and locations. Many of the species recorded are very fragile and can be
damaged by most sampling methods, such as net collection. Several varieties of
jellyfish larvae were observed and these demonstrate the advantage of holography
in being able to record semi-transparent (phase) objects.

A particular set of ten holovideos were recorded in sequence at high, medium
and low resolution and illustrate the analysis of population densities of calanoid
copepods. The total sampling volume over all videos was 400,000 cm3 and 79
copepods were identified giving an average population of 196 × 10−6 cm3.

eHoloCam has since been redesigned and reconfigured to operate to 10,000 m
depth.
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Chapter 6
Special Techniques

6.1 Applications Using Short Coherence Length Light

6.1.1 Light-in-Flight Measurements

Holographic recording of Light-in-Flight (LiF) was first proposed by Abramson
[1–4]. He pointed out that a hologram can only image the distances in space where
the optical path of the reference wave matches that of the object wave. The basic
idea of LiF consists of recording a hologram of a plane object by a short coherence
length laser, Fig. 6.1. For this purpose a cw Ar-Ion laser without intracavity etalon
could be used. The coherence length of such laser is in the range of few millimeters
or less. Alternatively also a picosecond pulsed dye laser can be used. The reference
wave is guided nearly parallel to the holographic plate (grazing incidence). In this
way, only those parts of the object are recorded (and later reconstructed), for which
the optical path difference (OPD) between object and reference wave is smaller than
the coherence length of the light source. By changing the observation point in the
developed plate, the above condition is met for different parts of the object, thus
allowing observation of a wavefront as it evolves over the object.

Digital Holography has been applied to LiF recordings by Pomarico et al. [100,
189]. In this work, an Ar-Ion laser pumped cw dye laser (Rhodamine 6G,
λ = 574 nm) is used. No frequency selecting elements are installed in the laser
resonator. Therefore the output spectrum consists of many oscillating modes,
resulting in a coherence length, which is determined by the LiF experiments to be
2.3 mm.

The laser beam is divided into a plane reference wave illuminating the CCD
array and into a diverging wave illuminating the object, Fig. 6.2. The path differ-
ences are provided by glass plates with different but known thicknesses. The object
consists of a plane aluminum plate of 2 cm × 2 cm area, the distance between object
and CCD sensor is 1.67 m, and the angle of illumination α (referred to the normal of
the object) is about 80°. A wavelength of λ = 574 nm is used and the maximum
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angle between object and reference wave is 2°. A camera with 2,048 × 2,048 pixels
is used as recording medium.

The first experiment is performed without any glass plates in the reference arm
of the interferometer. Since the object is illuminated at an angle only a part of the
object wave is coherent with the reference wave. The numerical reconstruction of
such a digitally recorded hologram shows, as expected, a bright stripe representing
the wavefront, Fig. 6.3.

The reconstructed image is available in digital form and further processing is
easy accomplished. For example, the coherence length can be calculated from this
image, Fig. 6.4. The width of the bright stripe (wavefront) is determined from both,
the coherence length of the light source, L, and the geometrical conditions of the
holographic set-up. If a plane reference wave is used and the angle between the
interfering waves is small (hmax ¼ 2� in this example), only changes in the optical
path due to the illumination beam have to be considered. In this case the bright zone
at the object has a width w given by

Laser

Hologram

Object

Fig. 6.1 Light-in-flight
holography

Delay plate

Plane wave

Object illumination
Object with mirror 

reaching CCD Sensor

Reference wavefront

CCD

Fig. 6.2 Optical set-up for
Digital LiF recording with
delay lines by glass plates
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w ¼ cs
sin a

¼ L
sin a

ð6:1Þ

where α is defined in Fig. 6.4 and τ is the coherence time. After measuring w,
Eq. (6.1) can be used to calculate the coherence length L of the light source using
the known angle α of the incident wave. As the measurements of the width are
disturbed by electronic and coherent noise, direct measurement of the intensity
profile leads to errors. A good result can be achieved by low-pass filtering of the
image and by applying the autocorrelation function to the intensity profile line. The
width of the wavefront measured by this procedure equates to 45 pixels. The
experimental conditions are: Dx ¼ 9 lm; d ¼ 1:67 m; k ¼ 574 nm; a ¼ 80�

Fig. 6.3 Numerically
reconstructed wavefront

Object

L
α

w

n

Illumination

Fig. 6.4 Geometrical
considerations for calculating
the coherence length
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The resulting coherence length is therefore

L ¼ w sin a ¼ 45 � Dn sin a ¼ 2:3mm ð6:2Þ

where Eq. (3.23) is used for calculating the image resolution Δξ.
It is also possible to apply Digital Holography to follow the evolution of a wave

front in its “flight” over an object, as proposed in the original work of Abramson for
conventional holography. However, because of the reduced size of the CCD target
and the lower resolution compared to a holographic plate, only slightly different
points of view of the wave front can be registered in each hologram.

A possible setup for this purpose, using a skew reference wave, has been pro-
posed by Pettersson et al. [187]. However, this solution is not applicable in this
situation because the high spatial frequencies that would be produced at the sensor
are not resolvable. A solution to this problem is to record a hologram introducing
different phase delays in different parts of the plane reference wave. That can be
achieved e.g. by introducing plane-parallel plates of different thickness in the plane
wave illuminating the CCD sensor, as in Fig. 6.2. A plate of thickness p and
refractive index n will produce a delay Δt with respect to air (or in vacuum with
light speed c) given by:

Dt ¼ n� 1ð Þ p
c

ð6:3Þ

That way it is possible to record in one exposure several holograms of the object
using a corresponding number of reference waves delayed with respect to each
other. The numerical reconstruction can carried out for each part of the CCD array
in which the phase of the reference wave has a particular delay, giving rise to the
desired “times of evolution” of the wave front illuminating the object. This is
equivalent to choose another observation point in the original LiF experiment. In
this sense, the phase delays introduced in the different parts of the reference wave
can be interpreted as artificial extensions of the CCD sensor and allow a better
visualization of the phenomenon.

In these experiments 6 mm thick PMMA plates (refractive index n * 1.5) are
used to produce the phase delays in the reference wave, Fig. 6.2. One third of the
original plane reference wave does not travel through PMMA, the second third,
illuminating the sensor in the middle, travels through 6 mm PMMA (representing
10 ps delay with respect to air) and the last third travels through 18 mm PMMA
(30 ps delay with respect to air). The object as seen from the CCD sensor is
schematically sketched for better recognition of the results, Fig. 6.5. It consists of a
3 cm × 3 cm plane aluminum plate, which was painted matt white for better light
scattering. A small plane mirror (1 cm × 1 cm area) is attached to the plate,
perpendicular to its surface and at an angle of about 10° to the vertical.
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The three reconstructed stripes of the hologram, corresponding to three different
times of evolution of the wavefront illuminating the object are shown in Fig. 6.6.
One part of the wavefront is reflected by the mirror, the other part is traveling in the
original direction. The three pictures can be interpreted as a slow-motion shot of the
wavefront. As demonstrated before, quantitative results can be derived from these
images, e.g. the speed of light.

The minimum number of pixels required for a part of the hologram to be
successfully reconstructed limits the number of different “times of evolution” that
can be simultaneously recorded. Furthermore, due to the borders of the plates
introduced into the reference wave, diffraction effects cause dark zones at the CCD
which cannot be used for numerical reconstruction.

Mirror

Expected Wavefront

Illumination
direction

Fig. 6.5 Object used for displaying the temporal evolution of a wave front as seen from the CCD
sensor

Fig. 6.6 The wavefront at three different times, reconstructed from one single holographic
recording. Left no delay, wavefront just reaching mirror.Middle 10 ps delay, the mirror reflects one
part of the wavefront. Right 30 ps delay with respect to the left recording, one part is reflected into
the opposite direction, the other part is traveling in the original direction
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6.1.2 Short-Coherence Tomography

The main disadvantage of introducing the path differences by glass plates with
different thickness are the diffraction effects at the edges of the plates. Therefore LiF
only allows a few discrete depth steps to be incorporated. To overcome this problem,
Nilsson and Carlsson proposed the use of a blazed reflection grating for generating
path differences [25, 162–164]. The set-up is composed of a Michelson Interfer-
ometer, Fig. 6.7, in which one mirror is replaced by the grating. The incoming beam
of a light source with sufficient short coherence length is split into two partial beams.
One partial beam illuminates the object and is diffusely reflected from the surface to
the CCD. The other beam is guided to the blazed reflection grating. The grating
reflects the beam back into the opposite direction of the incident beam, introducing a
spatially varying delay across the beam profile. Both beams interfere at the CCD,
which records the hologram. The method can be applied to measure the three-
dimensional object shape. This is possible because each vertical stripe of the
hologram fulfils the coherence condition for different object depths. Reconstruction
from different hologram parts creates different depth layers of the object.

Instead of the grating in Fig. 6.7 it is also possible to use an ordinary mirror in
the reference arm, see e.g. [179], which can be shifted in the direction of beam
propagation. Digital holograms are then recorded in different mirror positions. Each
single hologram represents another depth layer of the object and the shape can be
calculated from the holographic reconstructions. However, there is an advantage of
the setup shown in Fig. 6.7 using the grating: only one recording is necessary to
determine the whole object shape.

from short-coherence
light source

CCD

blazed
reflection grating

Fig. 6.7 Short-coherence
length tomography using a
blazed grating
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6.2 Endoscopic Digital Holography

Digital Holography provides the possibility to combine deformation measurement
and surface contouring in one single set-up. In the simplest case of measuring
object deformation, two holograms with a known wavelength are recorded for
different object states (Sect. 4.2). When shape measurement is required, the object
has to remain unchanged while two holograms with slightly different wavelengths
or slightly different illumination points are recorded (Sect. 4.3). Thus, and due to
the relatively simple geometry, this method appears to be well suited to endoscopic
measurements [101, 119] and the following description is partly based on these
publications. The requirements for an endoscopic Digital Holography sensor are
much more stringent than they are for a laboratory breadboard; for example, an
endoscopic system has to,

• be more flexible;
• be more robust in harsh environments;
• incorporate faster data processing;
• be very small;
• be adapted to restrictions caused by the system size.

A sketch of a prototype system is shown in Fig. 6.8, while Fig. 6.9 depicts a
functional prototype of the sensor head. The system can be divided into four parts:
the controlling computer, the laser and the corresponding fibre coupling units, the
endoscope and the sensor.

The sensor head has a diameter of 15 mm (current stage). In future it is intended
to decrease the size to a diameter of less than 10 mm.

The heart of the sensor is a commercial miniature CCD-camera with a 1/3″CCD-
matrix. Including the housing, this camera has a diameter of 10 mm. The objective of
the camera is removed to be able to record the digital holograms. Since the camera
provides a standard video-signal the hologram can be grabbed by a conventional
frame grabber. For the object- and the reference beam mono-mode glass fibres are
used. Currently, a single illumination beam is utilized. This is sufficient to measure

object beam
reference
beam

CCD

fiber
fiber
coupler LC phase

shifter

Laser

beam
splitter

mirror lens

beam
splitter

Fig. 6.8 Sketch of an endoscope based on digital holography
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the shape of the object and to measure one displacement component—in our case the
out-of-plane component. However, in the next step three illumination directions will
be implemented to be able to perform a 3D displacement measurement.

In general every laser source with sufficient coherence length can be used for
deformation measurements. However, for shape measurements, the wavelength of
the laser needs to be tuneable over a suitable spectral range. Thus, to keep the whole
system portable, currently a VCSEL laser diode is used as a light source. The
wavelength for this laser diode type can be tuned continuously in a range of about
8 nm.

From Fig. 6.8 it can be seen that the laser beam passes through a liquid crystal
phase shifter before it is coupled into the fibre for the reference beam. This LC
phase shifter is used to record temporal phase shifted holograms. A simple
reconstruction without using phase shifting results in an image that contains the
desired object image and additionally the twin image together with the zero order
term. By using temporal phase shifting the conjugate image as well as the zero
order can be eliminated completely from the resulting image (see Sect. 3.3.3). In
this way the full space-bandwidth of the CCD can be utilized. This is of great
importance, since the choice of the camera is restricted by the system size. Cameras
of this size are only available with a limited pixel number, which makes it necessary
to make use of all available pixels.

The high sensitivity of Digital Holography to object motion is also a disad-
vantage for a system that is intended to be used outside the laboratory. Even small
object vibrations caused by environmental influences can disturb the measurement,
and so high processing speed and fast data acquisition are important to minimize the
influence of unwanted disturbances. In order to achieve a high processing speed an
optimized phase-shift algorithm has been chosen [138]. More than six recon-
structions per second are possible for holograms with 512 × 512 pixels using a PC
with 1.4 GHz clock frequency.

Another benefit of high processing speed is the possibility to unwrap the phase
maps of deformation measurements in real time by temporal phase unwrapping [91].

Fig. 6.9 Sensor head of the endoscope (photo BIAS)
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In this method the total object deformation is subdivided in many measurement steps
in which the phase differences are smaller than 2π. By adding up those intermediate
results, the total phase change can be obtained without any further unwrapping. This
is an important feature, since it is essential to have an unwrapped phase to be able to
calculate the real deformation data from the phase map. Figure 6.10 shows an
example of such a measurement. The left image shows the wrapped deformation
phase for a clamped coin which was loaded by heat. The right image shows the
temporal unwrapped phase, which has been obtained by dividing the total defor-
mation in 85 sub-measurements.

6.3 Optical Reconstruction of Digital Holograms

The techniques discussed in this chapter differ from some of the other methods
presented previously, since reconstruction is performed optically. The computer is
just used as intermediate storage medium for digital holograms and some means of
performing optical read-out is needed, see Kujawinska et al. [133, 269].

Liquid Crystal Displays (LCD’s) are electro-optic devices used to modulate light
beams and they can be used as a spatial light modulator (SLM) in holography. An
individual LCD cell changes its transmittance depending on the applied voltage. It
is therefore possible, by varying the voltage, to modulate the brightness of light,
which passes through the device.

Optical hologram reconstruction with a LCD is possible e.g. with the set-up of
Fig. 6.11. Firstly, a hologram is recorded on an electronic sensor, Fig. 6.11a. The
hologram is stored and then transmitted to the reconstruction set-up, Fig. 6.11b.
Recording and reconstruction set-ups could be located at different sites. The LCD
modulates the reconstruction beam with the hologram function. The original object
wave is reconstructed due to the diffraction of the reconstruction beam at the

Fig. 6.10 Wrapped deformation phase of a heat loaded coin (left) and unwrapped phase generated
by temporal unwrapping (right)
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modulated LCD. The virtual image can be observed at the position of the original
object. Alternatively it is possible to reconstruct the real image by illuminating the
LCD with the conjugate of the reference wave.

An example of such an optical reconstruction of a digitally recorded hologram is
shown in Fig. 6.12a. A digital hologram of a chess piece knight is recorded and
stored. The image of the knight becomes visible if the LCD with the hologram
mask is illuminated by a reconstruction wave. Optical reconstruction of two
superimposed holograms, which are recorded in different object states results in a
holographic interferogram, Fig. 6.12b.

Instead of an LCD other electro-optical devices can be used as spatial light
modulators, too. Kreis, Aswendt und Höfling published the optical reconstruction
by means of a Digital Mirror Device (DMD) [128]. A DMD is a silicon mi-
cromachined component, which consists of an array of tiltable aluminium mirrors
mounted on hinges over a CMOS static random access memory (SRAM). Today
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Fig. 6.11 a Digital hologram recording with a CCD. b Optical reconstruction with a LCD
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DMD’s are available with up to 1280 × 1024 mirror elements. The individually
addressable mirrors can be tilted in binary mode either −10° (on) or +10° (off)
along an axis diagonal to the micromirror. In optical reconstruction DMD’s are
therefore operated in reflection. In contrast to LCD’s, which absorb up to 90 % of
the available light, a DMD is a reflective device yielding much more light. Con-
sequently the diffraction efficiency in the hologram reconstruction is better when
compared with LCD’s.

A very simple device for displaying digital holograms is a computer printer. The
high resolution of standard ink-jet or laser printers with up to 3,000 dots per inch
makes it possible to print digital holograms directly on a transparent film. The
hologram is then reconstructed by illuminating this film with the reconstruction
wave.

6.4 Comparative Digital Holography

6.4.1 Fundamentals of Comparative Holography

The principle of interferometry is the comparison of the optical wave reflected or
transmitted by the test object with another, known wavefield [102]. In Holographic
Interferometry at least one of these waves is stored by a hologram. By interference
the phase difference between the two wavefields can be measured. The phase
differences are related to the quantities to be determined via the geometry function
of the set-up. In this way it is possible to measure object shapes or deformation.
However, a severe restriction in conventional HI is that interference is only possible
if the microstructures of the surfaces to be compared are identical. The replacement

Fig. 6.12 a Optical reconstruction of a digital hologram by means of a LCD. b Optically
reconstructed holographic interferogram (from [173])
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of the object or large deformations lead to a decorrelation of the two speckle fields
and the loss of the interference. Thus standard HI is restricted to the comparison of
two states of the same object.

A method to overcome this restriction is comparative interferometry [67, 161].
This method is based on the illumination of the two states of the test component
with the corresponding conjugate object wave of the master object: the object wave
of the master component acts as a coherence mask for the adaptive illumination of
the test component.

In comparative interferometry a double exposure hologram of the master object
is taken in the two states according to a specific load. Reconstruction of this double
exposed hologram generates an interferogram. The relation between the measured
interference phase and the displacement vector is given by Eq. (2.84):

Du1 x; yð Þ ¼ 2p
k
~d1 x; y; zð Þ ~b1 �~s1

� �
¼~d1~S1 ð6:4Þ

The test object is investigated in a modified set-up for comparison with the
master: it is illuminated in the original observation direction ~b1 by the recon-
structed, conjugate wavefront of the master object, i.e. the real image of the master
object is projected onto the test object. It is observed in the original illumination
direction~s1. This procedure results in

~s2 ¼ �~b1 and ~b2 ¼ �~s1 ð6:5Þ

Du2 x; yð Þ ¼ 2p
k
~d2 x; y; zð Þ ~b2 �~s2

� �
¼ 2p

k
~d2 x; y; zð Þ ~b1 �~s1

� �
ð6:6Þ

Since the test object is illuminated by the conjugated wavefront of the master the
interferogram indicates the difference of the displacements between the two objects:

Du x; yð Þ ¼ Du1 x; yð Þ � Du2 x; yð Þ ¼ 2p
k

~d1 x; y; zð Þ �~d2 x; y; zð Þ
� �

~b1 �~s1
� �

ð6:7Þ

6.4.2 Comparative Digital Holography

Comparative Digital Holography is a combination of comparative holography with
Digital Holography [173, 174]. A digital hologram of a master object is recorded at
a location A, Fig. 6.13a. The transmission of this digital hologram to a test location
B can be done by any data transfer medium, e.g. by the internet. At location B the
hologram is fed into a Liquid Crystal Display operating as a spatial light modulator.
A laser reconstructs the hologram optically.

For the comparative holography the conjugate wavefronts of the master object
are reconstructed and illuminate the test object, Fig. 6.13b. The observation is done
in the original illumination direction. A great advantage of comparative DH

132 6 Special Techniques

http://dx.doi.org/10.1007/978-3-662-44693-5_2


compared to conventional comparative HI is, that the holograms of all states can be
stored and later reconstructed separately from each other. Therefore no additional
reference waves are needed for the separate coding of the different holograms. This
characteristic of Digital Holography reduces the technical requirements for com-
parative measurements significantly.

Fig. 6.13 Comparative digital holography (from [173]). a Recording of the mask. b Coherent
illumination of the test object with the conjugated wavefront of the master
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The method is demonstrated by the determination of a small dent in one of two
macroscopically identical cylinders with cones at their upper end. The depth of the
dent is a few micrometers. With holographic two-wavelength contouring, the
observed phase differences can be described by

Du1 x; yð Þ ¼ 2p
K

~b1 �~s1
� �

Dr
�!

1 x; yð Þ ð6:8Þ

Du2 x; yð Þ ¼ 2p
K

~b2 �~s2
� �

Dr
�!

2 x; yð Þ ð6:9Þ

The indices 1 and 2 denote the master or the test object, respectively, Λ is the
synthetic wavelength. The measurements are carried out with Λ = 0.345 mm

(λ1 = 584.12 nm and λ2 = 585.11 nm), Dr
�!

1 and Dr
�!

2 represent the relative height
deflection of the master with respect to the test object. Figure 6.14a shows the
reconstructed intensity of the test object, while the mod 2π contour lines are
depicted in Fig. 6.14b. The damage site is hard to recognize. However, after

Fig. 6.14 Demonstration of comparative digital holography (from [174]). a Reconstructed
intensity, test object. b Phase contour lines, test object. c Comparative phase difference, mod2π-
map. d Comparative phase difference, pseudo 3D-map
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holographic illumination of the test object with the real image of the master, the
difference phase Δφ corresponds to the difference in height deflections between
master and test object:

Du x; yð Þ ¼ Du1 x; yð Þ � Du2 x; yð Þ ¼ 2p
K

Dr
�!

1 x; yð Þ � Dr
�!

2 x; yð Þ
� �

~b�~s
� �

ð6:10Þ

This phase difference is shown in Fig. 6.14c (mod 2π-map) and Fig. 6.18d
(pseudo 3D-map).

The measured phase difference distribution is quite noisy because of the large
pixel dimensions of the CCD target and the spatial light modulator (CCD: 9 μm,
LCD: 29 μm). In future, better optical components might be available. Neverthe-
less, the comparison of Fig. 6.14b with 6.14d demonstrates the advantage of
comparative Digital Holography to measure the shape difference of two objects
with different microstructure: in the phase difference image the dent is clearly
recognizable.

6.5 Encrypting of Information with Digital Holography

Reconstruction of objects from their holograms is only possible, if the recon-
struction wave has nearly the same properties as the original reference wave used in
recording. Any deviation from the original amplitude and phase distribution results
in image aberrations or in total loss of the original object information. The
recording reference wave can be therefore regarded as a key to reconstructing the
information coded in the hologram. This is the principle of information encryption
by holography.

In the following a coding method proposed by Javidi et al. [95, 231, 232] is
described. The method is based on phase-shifting Digital Holography, see set-up in
Fig. 6.15. The key for encrypting the information is a diffusely scattering screen.
A parallel beam is split into two coherent partial beams at beam splitter BS1. One
partial beam illuminates the screen from the back.

The scattered light is guided to the CCD via beam splitter BS2. The other beam
is guided via BS3, mirror M3 and BS2 to the CCD. For this shutter SH1 is opened,
shutter SH2 is closed and the object is removed. Both beams interfere at the surface
of the CCD. A set of four interferograms with mutual phase shifts is recorded by
means of phase shifting devices. This can be done either by aligning the fast and the
slow axes of optical retarders with the polarization of the incident beam (as shown
in Fig. 6.15) or by other electro-optical devices like piezo-electric driven mirrors.
The complex amplitude of the plane partial wave guided via mirror M3 is 1 � ei�0 in
the simplest case. Consequently, it is possible to calculate the complex amplitude
aKeiuK of the wave scattered from the diffuser in the CCD plane by phase shifting
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algorithms (see also Sect. 2.7.5). If four interferograms I1–I4 with equidistant phase
steps of π/2 are recorded the amplitude and the phase of the “key” wave are
determined by following equations:

uK ¼ arctan
I4 � I2
I1 � I3

ð6:11Þ

aK ¼ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 � I3ð Þ2þ I4 � I2ð Þ2

q
ð6:12Þ

Recording of the object to be encrypted is accomplished by closing shutter SH1
opening shutter SH2 and illuminating the object via M2. The scattered light from
the screen is now used as reference wave. Again a set of four phase shifted inter-
ferograms I 01–I

0
4 is generated. The phase difference between the “key” wave phase

φK and the object phase φ0 is determined by:

u0 � uK ¼ arctan
I 04 � I 02
I 01 � I 03

ð6:13Þ

The following equation is valid for the product of the amplitudes:

a0 � aK ¼ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 01 � I 03
� �2þ I 04 � I 02

� �2q
ð6:14Þ

Without knowledge of ak and φK it is obviously not possible to calculate the
complex amplitude of the object wave in the CCD plane. The object can only be
reconstructed with the numerical methods described in Chap. 3, if the correct key is
given. This key consists of amplitude and phase of the wave scattered from the
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diffuser. A second key, which has to be known for correct object decoding, too, is
the recording distance d between diffuser and CCD.

6.6 Synthetic Aperture Holography

Every part of an off-axis hologram encodes the entire information about object. The
object can be reconstructed therefore from any cut-out of the hologram, where the
size of such a cut-out only influences the speckle size in the reconstructed image.
On the other hand it is also possible to synthesize a hologram from different single
holograms [129]. A possible recording geometry with two CCD’s is depicted in
Fig. 6.16 for a plane reference wave. Independent CCD-cameras are used to record
the single holograms. A fixed phase relation between the individual holograms is
ensured by using the same reference wave. Reconstruction of the synthesized
hologram is possible by following methods: single holograms are reconstructed
separately and the resulting complex amplitudes in the image plane are coherently
superimposed. A second possibility is to embed both single holograms in an arti-
ficial large hologram, where the grey values of all pixels not covered are set to zero
(black). Such an artificial hologram matrix is then reconstructed as a whole.

The resolution of images and phase maps reconstructed from digital holograms
depends on the recording distance d and on the effective aperture NDx, see
Eq. (3.23). However, both quantities are not independent of each other, because for
state-of-the-art sensors with pixel sizes in the range of 5 μm large apertures require
also long recording distances due to the spatial frequency limitations discussed in
Sect. 3.4.2. Increasing the aperture size by using more than one sensor therefore
does not automatically improve the image resolution, because the larger synthetic
aperture requires a longer recording distance. In order to decouple recording dis-
tance and aperture size it is therefore necessary to use sensors with small pixel sizes

θmax

θmax
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Object

CCD1

CCD2

Beamsplitter

Fig. 6.16 Aperture synthesis with two CCD’s
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in the range of one micron or below, which might be available in the future. With
such devices even the highest spatial frequencies could be resolved, independently
from the recording distance.

6.7 Holographic Pinhole Camera

In Sect. 3.2.1 it was demonstrated, that reduction of the effective aperture size leads
to a reduction of the image resolution. In Fig. 6.17 (left) the die used in Chap. 3 is
reconstructed using only 255 × 255 pixels, i.e. only one sixteenth of the original
hologram area. The die is still visible but with larger speckle size. Further reduction
of the aperture size to only 128 × 128 effective pixels (1/64 of the original hologram
matrix) increases the speckle size further so that the object can only be recognized
with very low resolution, see Fig. 6.17 (right). However, on the opposite side of the
DC term the other image, which was previously totally defocused, also becomes
visible in low resolution. The reason for this double image is due to the “pinhole
camera effect”. Light from the out-of-focus virtual image passes through the small
aperture (pinhole) and projects an inverted image on the opposite side of the CCD.

Fig. 6.17 Left reconstruction with 256 × 256 effective pixels. Right reconstruction with 128 × 128
effective pixels
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Fig. 6.18 The pinhole
camera effect
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The smaller the aperture size, the higher the resolution of the pinhole camera image
becomes, see Fig. 6.18. In a distance d the image resolution of the pinhole camera
image is given by the projected circle of confusion (can be seen from Fig. 6.18):

D/ ¼ 2NDx ð6:15Þ

That means holographic image forming and image generation due to the pinhole
effect are opposing effects. A smaller pinhole (small hologram aperture) will result
in sharper image resolution of the pinhole image, while a large aperture is needed to
create high resolution holographic images.
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Chapter 7
Computational Wavefield Sensing

7.1 Overview

With the advent of faster computer processors, alternative methods of wavefield
sensing have been developed throughout the past decades. In contrast to standard
interferometry, these methods aim at solving an inverse problem, whereby the
recorded intensities are interpreted as an effect caused by the underlying (unknown)
wavefield when subjected to different manipulations. In contrast to holography and
interferometry it is not possible to use film as a recording material and to optically
reconstruct the wavefield. In fact, it is even pertinent to say that the numerical task of
solving the inverse problem is an essential and integral part of the measurement
process. Bearing this in mind we may categorise these techniques under the term
computational wavefield sensing, in analogy to similar efforts in the field of imaging.

In most cases reasoning back on the wavefield subject to a set of observed
intensities is both mathematically and computationally demanding, calling for
sophisticated numerical methods and evaluation procedures. Having said this, there
are great benefits offered by computational wavefield sensing. It provides the means
to determine the complex amplitude of a wavefield without the requirement of a
particular reference wave. In optical metrology, this enables measurements with
interferometric accuracy and precision but yet strongly reduced demands with
respect to temporal and spatial coherence of the light as well as the mechanical
stability of the environment. It allows interferometry with low brilliance (number of
photons per time, area and solid angle within a small spectral range) light sources,
such as light emitting diodes (LED) with large emitters and even liquid-crystal
displays (LCD). This option is eye-safe, cheap and significantly reduces the dis-
turbing effect of coherent amplification arising from parasitic reflections within the
optical setup. Finally, it allows for determination of wavefields in cases in which the
application of a reference wave is impossible, such as in stellar interferometry.

The above properties are the main reasons why computational methods have
created substantial interest over the past decade or so. A comprehensive discussion
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and survey of the field including all existing techniques is beyond the scope of this
chapter. The aim of the following sections is therefore to provide an overview over
the most prominent methods, such as iterative and deterministic phase retrieval,
computational shear interferometry (CoSI) and Hartmann-Shack wavefront sensing.

7.2 Phase Retrieval

Initially the name Phase Retrieval referred to the problem of reconstructing an
image from the modulus of its Fourier transform. Obviously recovering the phase in
the Fourier domain from some pre-knowledge or constraints would reduce the
problem to a simple inverse Fourier transform. Similarly, in coherent optics, phase
retrieval refers to techniques in which the intensity of a wavefield is known across
one or several separated planes perpendicular to the axis of propagation. The task
then is to find a set of corresponding phase distributions which is consistent with the
Helmholtz-Equation and, if available, some additional constraints. In this section
we will present the mathematical foundations of the phase retrieval problem in
coherent optics and some of the most established ways to solve it.

We will begin with defining a notation for the above statement. Let us consider a
wavefield propagating through free space along the z-axis. Let us further define a
sequence of N planes at positions {zn|n = 1 … N} perpendicular to z as seen from
Fig. 7.1. We will refer to the complex amplitude of the wavefield across the nth
plane as

En x; yð Þ ¼ An x; yð Þ � exp ihn x; yð Þ½ �: ð7:1Þ

By construction, all En satisfy the Helmholtz-Equation, which means that two
complex amplitudes En and Em can be related by any propagation operator P, such
that

x

y

z
z1 z2 zN

Fig. 7.1 Phase retrieval is
based on measuring the
intensity of a wavefield across
a number of parallel planes
along the main axis of
propagation
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Em x; yð Þ ¼ P En; zm � znf g: ð7:2Þ

where zm − zn is the propagation distance between the planes. An example of an
explicit implementation of the propagation operator is given by the Fresnel-Kirchoff
diffraction integral in Eq. (2.48). We can assume the intensities In x; yð Þ ¼
En x; yð ÞE�

n x; yð Þ of the wavefield across all of the planes known but we do not know
the true phase distributions θn(x,y). With this notation we can formulate the inverse
problem constituting the phase retrieval scheme by means of the following
objective function in a least-squares sense:

L f1ð Þ ¼
X
n

P f1; zn � z1f gj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
In x; yð Þ

p��� ���2

¼
X
n

ZZ
P f1; zn � z1f gj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
In x; yð Þ

p��� ���2dxdy; ð7:3Þ

where the L2-norm ||…||2 indicates integration of the absolute squares over all
positions (x,y). In the discrete case the integral in Eq. (7.3) is replaced by a sum.
The function f1(x,y) = A1(x,y)exp[iφ1(x,y)] is an estimate of the complex amplitude
E1(x,y) of which only the amplitude A1(x,y) is known from the square root of the
measured intensity. Solution of the phase retrieval problem requires minimization
of the functional L with respect to f1 (or sometimes directly φ1) hence the solution is
given by the best estimate

~E1 x; yð Þ ¼ min
f1

L: ð7:4Þ

Note that because of the propagation operator, Eq. (7.3) is inherently consistent
with the Helmholtz-Equation. Once the wavefield in the first plane is estimated, the
phase can be determined in any of the planes by

~un x; yð Þ ¼ arg Pf~E1; zn � z1g
� �

: ð7:5Þ

A large number of different approaches have been developed to attempt the
minimization implied by Eq. (7.4). They can be mainly distinguished into iterative
and direct methods which we will discuss separately in the next sections. Some
techniques are not even designed to find an optimum in the strict least-squares sense
suggested by Eq. (7.3) but are computationally very efficient and still yield
acceptable results.

The choice of the minimization technique as well as the number of measure-
ments strongly influences the accuracy of the phase estimation. Additionally, the
results can be largely affected by including pre-knowledge into the minimization
process, such as limited support either in the spatial or the spectral domain or non-
negativity for example. However, by construction all phase retrieval techniques
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strongly rely on intensity diversity, i.e. that the measured intensities change
significantly between the observation planes.

7.2.1 Projection Based Methods

Probably one of the most established iterative methods has been published by
Gerchberg and Saxton [71] in 1972 and generalized for application in the field of
electron microscopy by Misell [158] in 1973. It is based on two intensity obser-
vations of the same wavefield in two propagation states. While in the initial
Gerchberg-Saxton approach the propagation states correspond to a spatial domain
and the corresponding Fourier domain, i.e. the far field, Misell only required a
minimum of two defocused representations of an electron beam to retrieve phase
values even in the case of partial coherence. The basic scheme of these techniques
is seen from Fig. 7.2. Both start with assuming an initial estimate of the phase
function in the first plane g1 = exp[iφ1] with random phase values φ1(x,y) in the
range of −π to π. Then the following steps are repeated until no significant changes
are observed:

1. The phase function g1 is multiplied with the amplitude obtained from the square
root of the measured intensity in the first plane. This yields an estimate of the
complex amplitude f1 in the first plane

f1 x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 x; yð Þ

p
� exp iu1 x; yð Þ½ �: ð7:6Þ

2. This estimate is numerically propagated to the second plane giving the inter-
mediate result f 02ðu; vÞ ¼ Pff1; z2 � z1g; where in case of the Gerchberg-Saxton

New function is
measured amplitude
times phase function

New function is
measured amplitude
times phase function

Propagate
to sec. plane

Propagate
to first plane

Extract
phase function

Extract
phase function

Get amplitude from
sq. root of measured
intensity in first plane

Get amplitude from
sq. root of measured
intensity in sec. plane

START:
Create random
phase function

first time only

Second time
and thereafter

Fig. 7.2 Flow chart of the phase retrieval algorithm introduced by Gerchberg and Saxton [71]
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algorithm the propagation operator P is exchanged by the Fourier transform.
From this, the phase function g2 is extracted by

g2 u; vð Þ ¼ f 02 u; vð Þ� f 02 u; vð Þ�� �� ¼ exp iu2 u; vð Þ½ �; ð7:7Þ

3. which is multiplied with the amplitude known from the square root of the
measured intensity in the second plane to arrive at an estimate for the complex
amplitude

f2 u; vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 u; vð Þ

p
� exp iu2 u; vð Þ½ �: ð7:8Þ

4. In the last step, f2 is propagated back to the first plane to obtain the intermediate
result f 01ðx; yÞ ¼ Pff2; z1 � z2g and to determine a new estimate

g1 x; yð Þ ¼ f 01 x; yð Þ� f 01 x; yð Þ�� �� ¼ exp iu1 x; yð Þ½ �: ð7:9Þ

A sequence comprising all four steps is considered a single iteration of the
scheme. For their approach, Gerchberg and Saxton were able to prove that the
difference between the measured and the calculated amplitudes [see Eq. (7.3)]

e kð Þ ¼ f ðkÞ1 x; yð Þ
��� ���� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1 x; yð Þ
p��� ���2; ð7:10Þ

where k denotes the number of iterations and f ðkÞ1 is the kth iterate, does not increase
through the iterations. However they admit that the process might stagnate and that
in many cases the solutions are not unique [71]. The process is usually stopped
when no significant changes for ε(k) are observed for consecutive iterations.

Later, Levi and Stark [143] were looking at the above algorithm from the per-
spective of generalized projections onto non-convex sets. They were able to refine
the above statement and show that the method indeed converges towards a solution
associated with the so called minimum set distance. Using their formalism it is also
straight forward to generalize this statement for the defocusing method. Because it
is based on a very instructive concept for the description of all Gerchberg-Saxton
type approaches we will follow their argument a bit further.

The basic idea is to categorize functions sharing the same mathematical prop-
erties into sets in Hilbert space. For example we can define a set C+, of which all
members are functions with positive values, such as f1(x) = |x| for example. Simi-
larly we may define a set CA of all complex functions fn(x) = a(x)exp[iφn(x)] which
exhibit the same amplitude a(x), i.e. members of CA only differ by the phase φn(x).

Sets can have the property of convexity which is best understood from Fig. 7.3.
A set C is convex if the straight line segment in Hilbert space connecting any two
members f1 and f2 of C lies entirely in C. Formally, convexity requires for all α in
the range from 0 to 1
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fa ¼ 1� að Þf1 þ af2 2 C ð7:11Þ

Given that definition we realize that the above example of C+ is a convex set,
while CA is non-convex. A useful tool is the projection of an arbitrary function
g onto a given set C. We call f = PC{g} the projection of g onto C if f is the member
of C that is closest to g

g� fk k ¼ min g� yk k; over all y 2 C: ð7:12Þ

Now we can express the Gerchberg-Saxton scheme very elegantly as alternating
projections onto two non-convex sets C1 and C2. For this, similar to the example of
CA given above, C1 shall be the set of functions having the amplitude a1(x,y) which
equals the square root of the intensity I1(x,y). Likewise, C2 shall be the set of
functions having the amplitude a2(x,y) in the diffracted plane, which equals the
square root of the intensity I2(x,y). In the complex plane it is easy to verify that
exchanging the amplitude of any arbitrary complex function g by a1 while pre-
serving the phase function of g indeed yields the projection of g onto C1 in the sense
of Eq. (7.12). By employing Parseval’s theorem we get a similar statement for C2.
Hence, one iteration of the Gerchberg-Saxton algorithm can be expressed by means
of two subsequent projections

f ðkþ1Þ
1 ¼ P1 P2 f ðkÞ1

n on o
; ð7:13Þ

where P1 and P2 denote projection onto C1 and C2 respectively. A good criteria to

verify whether a given iterate f ðkÞ1 is in agreement with the constraints defined by the
sets is the so called summed distance error (SDE)

Convex Non-convex

f
1

f
1

f
2

f
2

Fig. 7.3 Example of a convex (left) and of a non-convex (right) set of functions in Hilbert space.
A set is called convex if a straight line between any two members of the set lies entirely in the set
as well
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J f ðkÞ1

� 	
¼ P1 f ðkÞ1

n o
� f ðkÞ1

��� ���þ P2 f ðkÞ1

n o
� f ðkÞ1

��� ���; ð7:14Þ

which is the sum of the distances of the iteration to the two sets. While it is proven
that for convex sets alternating projections always converge to a global minimum in
the sense of Eq. (7.14) [262], the situation is different for non-convex sets, yet Levi
and Stark were able to prove that for consecutive iterations of Eq. (7.13) it is at least
true that

J f ðkþ1Þ
1

� 	
� J f kð Þ

1

� 	
: ð7:15Þ

Hence the Gerchberg-Saxton algorithm either converges or stagnates if it has
found a (potentially local) minimum of the summed distance error. However,
besides the fact that it often converges to a local minimum, i.e. a wrong solution, it
also has a comparably slow convergence rate in many cases [58]. Therefore,
throughout the past decades a number of related methods have been developed
[260] by considering intensities recorded across planes connected by either a
Fresnel transform [193] or a fractional Fourier transform [45]. In an attempt to
provide faster converging methods, the basic scheme of numerically propagating
the wavefield between two planes has been extended to multiple recording planes
either by a gradient descent approach [93] or simply by extending the iterative
scheme shown above to a number of consecutive planes [185]. Indeed, the method
appears to converge more rapidly with an increasing number of planes involved [9].
However, to the best of our knowledge there is no proof reported that this process
will yield a global minimum of Eq. (7.3), even though it is observed to find very
good solutions presumably close to the minimum.

For the experimental implementation of phase retrieval it is possible to shift the
camera sensor along the optical axis. However, mechanical alignment is tedious and
time consuming, especially because the model introduced by Eq. (7.3) assumes the
direction of the movement to exactly coincide with the axis of propagation. The
setup shown in Fig. 7.4 has proven to be a convenient arrangement to experi-
mentally realize phase retrieval in the sense that it enables recording of the required
intensities in a short time and without any mechanical alignment [53].

It is composed of a classical 4f-setup with a liquid crystal spatial light modulator
(SLM) in the corresponding Fourier domain as the key element. The concept makes
use of the fact that the process of propagation can be expressed by a linear shift
invariant system. As seen from Eqs. (3.30)–(3.33), the propagation between two
planes separated by a distance z can be expressed as

E2 x; yð Þ ¼ P E1; zf g ¼ F�1 F E1f g � hzf g; ð7:16Þ

with the transfer function hz in the spectral domain (ζ,η)
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hz f; gð Þ ¼ exp ikz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 f2 þ g2


 �q� 

; ð7:17Þ

and wave number k = 2π/λ. As seen from the structure of Eq. (7.17), propagation
only affects the phase in the spectral domain, which is equivalent to the observation
that the energy is preserved during that process. As a consequence it is feasible to
reproduce the transfer function of propagation by means of a liquid crystal SLM
which modulates the phase of the reflected light. With the Fourier transform
properties of the lens and the focal length f we can substitute η = u (λf)−1 and
ζ = v (λf)−1 to arrive at the distribution to be generated by the SLM

hz u; vð Þ ¼ exp ikz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f�2 u2 þ v2ð Þ

ph i
; ð7:18Þ

where u and v are coordinates in the SLM domain. As an example for typical results
obtained from phase retrieval, Fig. 7.5 shows a sequence of four intensity

L1

L2

CCD

SLM

(x,y)

α

(u,v)

Object

Fig. 7.4 An experimental setup for phase retrieval without any mechanically moving parts [53].
The key element is a liquid crystal spatial light modulator in the spectral domain of a 4f-setup
constituted by the lenses L1 and L2, which modulates the incoming light with the transfer function
of propagation. A tilt angle α of a few degrees is required because of the reflective SLM. It has not
been observed to have any significant influence on the result and will therefore be neglected

z  = 5 mm1 z  = 7 mm2 z  = 9 mm3 z  = 11 mm4

1 mm

Fig. 7.5 Experimental results of phase retrieval obtained using the setup shown in Fig. 7.4 and an
U.S. Air Force resolution test chart as object
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distributions captured using the above setup. The object was an U.S. Air Force
resolution test chart (MIL-STD-150A standard) which has been investigated in
transmission using LED light at λ = 625 nm and lenses with focal lengths of
f = 150 mm. In the examples shown, the SLM generated four propagation transfer
functions from z1 = 5 mm to z4 = 11 mm in steps of 2 mm. As a consequence the
intensities appear to be blurred representations of the objects image, even though
the object was placed in the front focal plane of the first lens.

In Fig. 7.6a the phase distribution across the plane at z1 is shown after 20
iterations of the extended Gerchberg-Saxton scheme introduced above, i.e.
numerically propagating through the planes while exchanging the amplitude by the
measured one and preserving the phase function. In order to verify whether the
obtained phase is correct, Fig. 7.6b shows the amplitude of the wavefield after
numerically propagating it by 5 mm from z1 to the focal plane using the angular
spectrum method. Even very fine details are resolved proving that the phase of the
wavefield has been determined accurately.

The setup can also be used for shape [266] and deformation [7] measurements.
Here, the short acquisition time provided by the SLM has the great advantage that
quasi static scenes can be investigated. This has made it feasible to apply phase
retrieval to non-destructive testing with thermal load. The results are fully com-
parable with the displacement measurements obtained from digital holographic
interferometry, as introduced in Sect. 4.1. Yet phase retrieval is much more tolerant
against environmental disturbances, which is a major benefit with respect to
industrial applications.

As an example we present the investigation of a carbon fibre reinforced plastics
(CFRP) panel by means of thermal load. The panel, of which the front is seen in
Fig. 7.7a, is part of an airplane fuselage. The task is to find the patch shown in

Fig. 7.6 a The phase distribution obtained from phase retrieval after 20 iterations of the extended
Gerchberg-Saxton scheme and b the amplitude of the wavefield after numerical propagation to the
focal plane
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Fig. 7.7b attached to the reverse side by looking at the front of the panel during
thermal excitation. For the investigations an objective lens was used to produce
images of the macroscopic object. The image plane of the objective lens was
arranged to coincide with the object plane of the setup in Fig. 7.4 and a laser with
wavelength λ = 532 nm was used to illuminate the specimen. While the object was
in the relaxed state, a sequence of eight intensities were recorded, which correspond
to propagation distances of z1 = 0 mm to z8 = 1.4 mm in steps of 0.2 mm. Note that
the steps are comparably small because of the significant field curvature across the
image plane of the lens objective.

The phase distribution of the relaxed state φ1 has been obtained after 50 itera-
tions. Subsequent to the first measurement, the object was thermally excited. The
surface was heated by ΔT = 24 Kelvin using infrared radiation. Another set of 8
intensities were recorded and the phase distribution of the loaded state φ2 deter-
mined. As seen from Sect. 4.1, the fringes formed by the phase difference Δφ =
φ1 − φ2 shown in Fig. 7.8a are proportional to the surface deformation due to the
thermal expansion. They are dominated by a coarse deformation of the entire CFRP
panel. After numerical compensation for this spatially low varying term, the foot
print of the patch on the reverse side can be clearly identified from the inhomo-
geneous deformation of the front side material, as seen from Fig. 7.8b.

Finally, we would like to mention two prominent generalizations of the
Gerchberg-Saxton approach which are called the Error Reduction method and the
Hybrid Input-Ouput method (HIO) which both have been introduced by Fienup
[61]. The idea behind these techniques is to apply the Fourier domain constraint in
the same way like in the original Gerchberg-Saxton algorithm but to combine it
with a different kind of a priori knowledge about the wavefield in the corresponding
spatial domain. Important cases of pre-knowledge are non-negativity of an image,
as found in astronomic speckle interferometry, or support limitations of E1(x,y), i.e.
an aperture exhibiting a bounded area S outside of which the amplitude of the
wavefield is known to drop to (or close to) zero. The generalized working principle
of both methods is shown by the flow chart in Fig. 7.9.

Fig. 7.7 Non-destructive testing of CFRP panels by means of phase retrieval: a Front side of the
panel and b corresponding reverse side with a patch attached to it
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Either of the algorithms can be interpreted as a non-linear system in which an
input distribution f1(x,y) is processed by exchanging the amplitude in the Fourier
domain by the square root of the measured intensity I2, leading to an output dis-
tribution f 01ðx; yÞ. This operation is equivalent to the Fourier part of the Gerchberg-
Saxton algorithm which can be described by the projection operator P2 used in
Eq. (7.13). Finally, the object constraints are applied based on the pre-knowledge.

Both methods work iteratively, starting with a random distribution f ð0Þ1 ðx; yÞ for
example, but differ by the way the object constraints are applied. Let us denote the

current iterate by f ðkÞ1 ðx; yÞ. In the error reduction method, the next iterate

f ðkþ1Þ
1 ðx; yÞ is computed from the projection f 0ðkÞ1 ðx; yÞ by means of

Fig. 7.8 Experimental results for non-destructive testing under thermal load by means of phase
retrieval: a fringes indicating a strong deformation of a CFRP panel due to thermal load and b foot
print of a patch on the reverse side of the panel identified by an inhomogeneous deformation on the
front side [7]

f  (x,y)

Fourier
transformation

1

f ' (u,v)=F{   }2 f 1

Satisfy
Fourier constraints

f  (u,v)=             I2

f '  2

| f ' |2
2

inverse Fourier
transformation

Satisfy
object constraints f ' (x,y)=F  {   }1 f   2

-1

Fig. 7.9 Flow chart of the error reduction method and the hybrid input output method (HIO)
introduced by Fienup. The index k usually indicating the number of iteration was left away for the
sake of clarity here
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f ðkþ1Þ
1 ðx; yÞ ¼ f 0 kð Þ

1 x; yð Þ; x; yð Þ 62 c
0; x; yð Þ 2 c

�
: ð7:19Þ

Here, γ is the set of points at which the projection f 0ðkÞ1 ðx; yÞ violates the object
constraints. It is straight forward to verify that for the above mentioned examples of
non-negativity and/or limited support of the wavefield E1(x,y), Eq. (7.19) indeed is
a projection in the strict sense of Eq. (7.12). Even further, both examples constitute
a convex set in the sense of Eq. (7.11). In those cases the error reduction method
can be described by 2 subsequent projections, similarly to Eq. (7.13). As a con-
sequence, Eq. (7.15) holds and the method is guaranteed to reduce the summed
distance error (or to stagnate), which is the name giving property. However, one of
the main drawbacks is that after a few iterations the system is observed to only
show very slow convergence rates.

In order to improve the convergence rate, the hybrid input output method was

developed, according to which the next iterate f ðkþ1Þ
1 ðx; yÞ is calculated from the

projection f 0ðkÞ1 ðx; yÞ using

f kþ1ð Þ
1 x; yð Þ ¼ f 0 kð Þ

1 x; yð Þ; x; yð Þ 62 c

f kð Þ
1 x; yð Þ � b � f 0 kð Þ

1 x; yð Þ; x; yð Þ 2 c

(
; ð7:20Þ

where β is referred to as the feedback parameter. According to Fienup [60] a value
between 0.5 and 1.0 works well in most cases. The hybrid input output method is
observed to converge much faster to a reasonable solution than the error reduction
algorithm and even escapes local minima in some cases. Having said that, it is
difficult to conjecture a realistic case in which Eq. (7.20) constitutes a projection in
the sense of Eq. (7.12) and we cannot guarantee convergence or even uniqueness of
the solutions based on the formalism of generalized projections behind Eq. (7.15).
However, we encourage the interested reader to have a look at the work of Bau-
schke et al. [12] who explained the success of the method in terms of classical
convex optimization methods. Another intuitive explanation of the convergence
properties is reported by Takajo et al. [234].

Recently, Fienup reported an update of the HIO method which he named con-
tinuous hybrid input output (CHIO), in order to overcome problems of the algo-
rithm with oscillating solutions [60]. The problems arise because of the
discontinuous behaviour of Eq. (7.20) in cases in which small changes of a par-

ticular value of f 0ðkÞ1 ðx; yÞ decide whether it is in compliance with the constraints or

not. A good example is the case in which the estimate f ðkÞ1 ðx; yÞ shall be a positive
real valued function. To illustrate this case, Fig. 7.10 shows for a specific position

(x0, y0) the value of the next iterate f
ðkþ1Þ
1 in dependence of the projection f 0ðkþ1Þ

1 and

the current iterate f ðkÞ1 for both, the error reduction method and the HIO method as
obtained from Eqs. (7.19) and (7.20) respectively.
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In case of the error reduction method the successor f ðkþ1Þ
1 simply becomes zero

when the projection f 0ðkÞ1 yields a negative value as seen from the diagram in
Fig. 7.10a. In the same situation, HIO has a discontinuous step, hence an infini-

tesimal variation of f 0ðkÞ1 in this region can drastically affect the resulting value of

f ðkþ1Þ
1 . This can be seen from Fig. 7.10b. The aim of CHIO is to provide a con-
tinuous transition, which in case of non-negativity can be realized by the following
modification of Eq. (7.20):

f ðkþ1Þ
1 x; yð Þ ¼

f 0ðkÞ1 x; yð Þ; af ðkÞ1 x; yð Þ� f 0ðkÞ1 x; yð Þ
f ðkÞ1 x; yð Þ � 1�a

a � f 0ðkÞ1 x; yð Þ; 0� f 0ðkÞ1 x; yð Þ� af ðkÞ1 x; yð Þ
f ðkÞ1 x; yð Þ � b � f 0ðkÞ1 x; yð Þ; otherwise

;

8><
>: ð7:21Þ

where α is a second feedback parameter. The behaviour of CHIO with respect to the
above example is shown is Fig. 7.10c. The algorithm causes fewer problems with
oscillations and converges even faster when compared to HIO.

There also exist a few variants based on the above projection based approaches,
of which a detailed discussion is beyond the scope of this introduction. For the
interested reader we add some reference to the hybrid projection-reflection algo-
rithm (HPR) which is a special case of CHIO with α = 1/(1 + β) and has been design
specifically for non-negativity constraints [13], the difference map approach (DM)
[50] which is an attempt to unify some projection based algorithms, the averaged
successive reflections algorithm (ASR) [12] and the relaxed averaged alternating
reflectors algorithm (RAAR) [149] which again applies the theory of convex
optimization to the non-convex problem of phase retrieval in order to make it
mathematically tractable.
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1
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Fig. 7.10 The value of the next iterate f ðkþ1Þ
1 depending on the value of the projection f 0ðkÞ1 subject

to the non-negativity constraint for a the error reduction method, b the standard HIO method and
c the continuous HIO method [60]

7.2 Phase Retrieval 153



7.2.2 Gradient Search Methods

An alternative way for minimization of the functional in Eq. (7.3) is to employ
gradient search methods [217]. In the following we would like to detail this concept
by means of the steepest descent gradient method, since it is the most instructive
and intuitive gradient technique.

Similarly to the Gerchberg-Saxton type of approach, the basic idea is to start

with an arbitrary initial guess for the phase distribution in the first plane uð0Þ
1 and to

iteratively refine the estimate. However, in contrast to projection based algorithms
the next iteration is calculated by directly following the negative gradient of the
objective function L with respect to the function values of the current phase esti-

mate uðkÞ
1 ðx; yÞ:

uðkþ1Þ
1 x; yð Þ ¼ uðkÞ

1 x; yð Þ � aðkÞ � rL kð Þ x; yð Þ: ð7:22Þ

Here ∇L(x,y) denotes the partial derivative of the functional L after the values of

the phase estimate uðkÞ
1 at position (x,y)

rLðkÞ x; yð Þ ¼ oL

ouðkÞ
1 x; yð Þ

: ð7:23Þ

Since the gradient always points towards the greatest increase, following its
opposite direction will reduce the value of L. The scalar parameter α(k) is called the
step size, which is the distance in Hilbert space that we are willing to follow the
negative gradient. It is often optimized numerically by a trial and error method. The

most primitive algorithms simply calculate the values of Lðuðkþ1Þ
1 Þ for different

values of α(k) and finally decide for that value of α(k) which yields the smallest value

for Lðuðkþ1Þ
1 Þ.

Please, note that because f ðkÞ1 and uðkÞ
1 are two dimensional functions, the gra-

dient is also a two dimensional function and may be complicated to determine. For
numerically efficient implementation it is therefore convenient to have an explicit
expression for the gradient. Inserting Eq. (7.3) into Eq. (7.23) yields [93]

rLðkÞ ¼ Im f kð Þ
1 �

X
n

w kð Þ�
n

" #
; ð7:24Þ

where

wðkÞ
n ¼ P�1 ffiffiffiffi

In
p f ðkÞn

f ðkÞn

��� ��� ; zn � z1

8<
:

9=
;: ð7:25Þ
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Here, P−1 is the inverse of the propagation operator and f ðkÞ1 ¼ A1 expðiuðkÞ
1 Þ is

the estimate of the complex amplitude in the first plane. Let us discuss the structure

of Eq. (7.25) a bit further. The f ðkÞn are the estimates of the wavefield in the nth plane

based on the kth iteration f ðkÞ1 . They can be expressed by means of the propagation
operator

f ðkÞn ¼ P f ðkÞ1 ; zn � z1
n o

: ð7:26Þ

According to Eq. (7.25) the amplitude of the propagated wavefield f ðkÞn is
exchanged by the square root of the measured intensity and then propagated back
again to the first plane by means of the inverse of the propagation operator. Hence,

the function wðkÞ
n describes the projection of the current estimate f ðkÞ1 onto the set of

functions having the intensity In in the nth plane. If we generalize the projection
operator in analogy to Eq. (7.13), we can write:

wðkÞ
n ¼ Pn f ðkÞ1

n o
: ð7:27Þ

This remarkable result indicates a close relation between projection based and
gradient based methods. It also shows that the gradient can be calculated most
efficiently by simply adding a series of forth and back propagations while
exchanging the amplitudes by the ones obtained from the measured intensities.

Alternatively, gradient based methods can be employed to optimize for the

complex values of f ðkÞ1 rather than for the phase values. In this case, the gradient is
defined by

rLðkÞ x; yð Þ ¼ oL

of ðkÞ1 x; yð Þ
: ð7:28Þ

The main advantage of this approach is that the amplitudes in the first plane are
varied as well, which is a benefit over simply accepting the square root of the noisy
intensity observations. Inserting Eq. (7.3) into Eq. (7.28) yields the analytic form of
the gradient [60]

rLðkÞ ¼ �2
X
n

v kð Þ
n ; ð7:29Þ

where

vðkÞn ¼ P�1 ffiffiffiffi
In

p f ðkÞn

f ðkÞn

��� ���� f ðkÞn ; zn � z1

8<
:

9=
;: ð7:30Þ
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In analogy to Eq. (7.22), the gradient can be used to calculate the successor of
the complex amplitude by

f ðkþ1Þ
1 x; yð Þ ¼ f ðkÞ1 x; yð Þ � aðkÞ � rL kð Þ x; yð Þ: ð7:31Þ

Finally, we should mention that the same gradients Eqs. (7.24) and (7.29) can be
used to calculate the search directions (conjugate gradients) for the conjugate
gradient (CG) method, which converges in many cases much faster than the simple
steepest descent approach outlined above.

7.2.3 Deterministic Methods

Deterministic methods of phase retrieval aim at calculating the phase directly from
a set of intensities rather than iteratively approximating a solution which minimizes
Eq. (7.3). The most prominent technique in this field is based on the so called
transport-of-intensity equation (TIE) introduced by Teague [238] which provides an
analytic relation between phase and intensity in monochromatic light. The TIE is
based on the Fresnel approximation and its application for phase retrieval is limited
to cases in which the intensity across the observation plane is constant. In optical
metrology this restricts any method using the TIE to pure phase objects being
illuminated with homogenous light, e.g. transparent specimen illuminated by a
plane wave. As a consequence all wavefields exhibiting vortices or diffraction
effects cannot be investigated by this method. However, the big advantage of TIE
based techniques is that they are computationally very efficient and in principle only
require the acquisition of the intensity across two parallel planes separated along the
main axis of propagation. In the following, we will derive the TIE from the
Helmholtz-Equation, discuss its properties and finally show an example of
application.

The main assumption of the TIE is the paraxial, or Fresnel approximation, i.e.
the light rays are assumed to travel along or close to the main axis of propagation.
Without loss of generality we may choose the positive z-axis to be the main
direction of propagation. In this case we can express the complex amplitude of a
monochromatic wavefield at any point r = (x,y,z) in space by means of

u rð Þ ¼ f rð Þ � exp ikzð Þ; ð7:32Þ

where f(r) is a complex valued function which is slowly varying along the z-axis.
We can insert Eq. (7.32) into the Helmholtz-Equation

r2 þ k2

 �

u rð Þ ¼ 0; ð7:33Þ
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to verify what requirement the complex function f(r) has to fulfil in order to satisfy
it. With the assumption that f(r) is slowly varying along the z-direction we may set
its second derivative after z to zero and yield

1
2k

r2
T þ i

o
oz

� �
f rð Þ ¼ 0; ð7:34Þ

where we introduced the transverse part of the Laplace-Operator ∇T in the (x,y)-
plane

r2
T ¼ o2

ox2
þ o2

oy2
: ð7:35Þ

The differential equation Eq. (7.34) represents the paraxial approximation of the
Helmholtz-Equation. In many cases, it is more convenient to express it in terms of u
(r) rather than f(r) by means of the parabolic equation

1
2k

r2
T þ i

o
oz

þ k

� �
u rð Þ ¼ w u rð Þf g ¼ 0: ð7:36Þ

which can be easily verified by inserting Eq. (7.32) and using Eq. (7.34). Here, we
introduced the operator ψ for the sake of brevity. Teague made the following
statement using the above parabolic equation

u�ðrÞ � w uðrÞf g � uðrÞ � w u�ðrÞf g ¼ 0: ð7:37Þ

By Inserting Eq. (7.32) and rearranging the terms it is straight forward to yield
the transport-of-intensity equation

k
o
oz

IðrÞ ¼ �rT � IðrÞrTuðrÞ: ð7:38Þ

The TIE is a differential equation that relates the phase φ(r) of the wavefield to
its intensity I(r). In case that the intensity is known to be different from zero across
the entire observation plane it can be solved numerically for example by means of
orthogonal series expansion [77] or multi-grid methods [8], which is computa-
tionally demanding. A much more efficient solution is achieved when I(x,y,z0) = I0
can be assumed, i.e. the intensity in the observation plane at position z0 is constant.
In this case we yield the following Poisson equation:

� k
I0

o
oz

IðrÞ ¼ r2
TuðrÞ: ð7:39Þ
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However, even though I(r) is constant across the (x,y)-plane at z0, it still can vary
in the z-direction which means that its derivative after z will in general be different
from zero. To solve the Poisson equation in a numerically efficient way we make
use of the fact that, according to Eq. (A.13) in Appendix A2, derivation of a
function can be described by means of a transfer function in the frequency domain.
This can be exemplified by considering the Fourier transform G(ν) of an arbitrary
complex function g(x)

g xð Þ ¼ Z1

�1
G mð Þexp i2pxmð Þdm: ð7:40Þ

Derivation of g after x yields

og
ox

¼ o
ox

Z1

�1
G mð Þexp i2pxmð Þdm

 !
¼ Z1

�1
G mð ÞH mð Þexp i2pxmð Þdm; ð7:41Þ

with the linear term H(ν) = i2πν representing the transfer function of differentiation.
By analogy with the application of a simple derivative in Eq. (7.41) we can also
apply the transverse Laplacian Eq. (7.35) to Eq. (7.40) and yield the corresponding
transfer function

T m; nð Þ ¼ �4p2 m2 þ n2

 �

: ð7:42Þ

This implies that the Poisson Equation (7.39) can be solved by simply applying
the inverse filter T−1(ν,ξ) in the Fourier domain. However, T−1 has a pole at
ν = ξ = 0 and if noisy measurements are at hand it is necessary to find an optimum
filter in a least-squares sense. We will define an objective function based on the
Tikhonov regularization which constraints the solution to the one with minimum
norm:

Lðf Þ ¼ r2
T f x; yð Þ � me x; yð Þ�� ��2 þ a f x; yð Þk k2: ð7:43Þ

Here, mε(x,y) = m(x,y) + ε(x,y) represents the measurement, where m(x,y) stands
for the left hand side of Eq. (7.38) and ε(x,y) is additive noise. The regularization
parameter α has to be chosen inversely proportional to the signal to noise ratio. The
least-squares solution φLSE(x,y) is provided by the minimum of the functional
L with respect to f

uLSE x; yð Þ ¼ min
f

L: ð7:44Þ

Calculation of the gradient of L after the function values of f is non-trivial
because of the transverse Laplacian. We therefore employ Parseval’s theorem and
perform the optimization in the Fourier domain
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L Fð Þ ¼ F m; nð ÞT m; nð Þ �Me m; nð Þk k2 þ a F m; nð Þk k2; ð7:45Þ

where capitalization denotes the Fourier transform of their lower case counterparts.
To find the optimum F which minimizes L we set the gradient to zero:

oL
oF

¼ oL
oFR

þ i
oL
oFI

¼ 2T� F � T �Með Þ þ 2aF ¼ 0; ð7:46Þ

where FR(ν,ξ) and FI(ν,ξ) are the real and the imaginary part of F(ν,ξ). Finally, by
rearranging for F and using the fact that according to Eq. (7.42) T* = T, we obtain
the optimum filter TINV which can be applied in the Fourier domain in order to
recover the Fourier transform of the phase in a least squares sense:

F m; nð Þ ¼ T� m; nð Þ
T m; nð Þj j2þa

Me m; nð Þ ¼ TINV m; n; að Þ �Me m; nð Þ: ð7:47Þ

Hence, we can determine the least-squares solution for the phase by means of
two Fourier transforms and multiplication of the inverse filter

uLSE x; yð Þ ¼ � k
I0
F�1 F oI x; y; z0ð Þ

oz

� �
� T� m; nð Þ
T m; nð Þj j2þa

( )
: ð7:48Þ

The values of this solution are not wrapped in the interval [−π,π]. Instead, φLSE
constitutes a smooth function which can be related to a wavefront. Furthermore, due
to the use of the Fourier transform, the solution is inherently assumed to be periodic
in all cases in which the values of mε are merely known across a limited domain.

A crucial step in the application of TIE based techniques is the determination of
the derivative of the intensity along the z-axis, which serves as the input data to the
method. It cannot be measured directly and has to be derived from a set of intensity
observations. The most straight forward approach is to make a finite approximation
employing a difference quotient based on two measurements at positions z+ and z−:

oI x; y; z0ð Þ
oz

� I x; y; zþð Þ � I x; y; z�ð Þ
zþ1 � z�

: ð7:49Þ

If any of the positions z+ or z− is selected to equal z0, i.e. the position of the
observation plane, only two measurements are required. However, the approxi-
mation is better if the measurements are symmetrically distributed around the
observation plane, requiring at least three intensity measurements at z-, z0 and z+ for
the phase reconstruction in Eq. (7.48). The choice of the distance Δz = z+ − z− is a
trade-off. Small distances will yield better approximation of the difference quotient,
while larger distances will improve the detection of intensity changes. In practice, a
distance in the range of the diffraction limited depth of focus of the imaging system
has proven useful [225]. Even better approximations can be achieved for example
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by polynomial fitting [247] when intensity measurements in multiple planes are
considered.

In the following we will present an example of application from the field of
quantitative phase contrast microscopy. The setup is shown in Fig. 7.11. It is a
combination of a long distance microscope objective with a magnification of
M = 1:10 and the 4f-configuration introduced in Fig. 7.4. The image plane of the
microscope objective coincides with the input plane of the 4f-setup. The object is a
gradient index (GRIN) fibre with a core diameter of D = 62.5 µm. The fibre is
inserted into a box-shaped container filled with a liquid that matches the refractive
index of the cladding. The aim of the experiment is to measure the relative optical
path of light transmitting the container. It is expected that the fibre core will delay
the light significantly. From the results it is possible to reason back on the properties
of the fibre core, such as symmetry, homogeneity along the fibre axis or, if a
cylindric shape can be assumed, even the refractive index distribution. The light
source is a fibre coupled LED which emits light at λ = 625 nm.

In Fig. 7.12 we see the three intensity measurements at positions z− = −10 µm,
z0 = 0 µm and z+=10 µm relative to the focal plane. The microscope objective has a
numerical aperture of NA = 0.28, so that the distance Δz = z+ − z− = 20 µm is well
beyond the diffraction limited depth of focus

lR ¼ k

2N2
A

ð7:50Þ

of lR = 3.9 µm. The method is quite robust against dirt and dust particles on the
optics which are comparably far away from the focal plane, because their appear-
ance does not change significantly due to the defocusing procedure and only dif-
ferences of the captured intensities are considered for the numerical integration. In

L1

L2

CCD

SLMInput plane

Object LDM

1:10

Illumination

Fig. 7.11 Measuring the relative optical path by means of quantitative phase contrast microscopy
using a TIE based technique. The setup is a combination between a long distance microscope
objective (LDM) and the SLM based phase retrieval setup introduced before. The object is a
gradient index fibre in a box-shaped container filled with an index matching liquid. The object is
illuminated by collimated light coming from a fibre coupled LED with central wavelength
λ = 625 nm
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Fig. 7.13a the result for the relative optical path as obtained from Eq. (7.48) is
shown, where the difference quotient Eq. (7.49) has been used to approximate the
derivative of the intensity after z, and the average intensity in plane z0 has been used
as I0. The influence of the fibre core on the optical path is clearly seen and even the
cladding is visible. In the background we see low frequent deviations which are
assumed to have two reasons. First of all, the frequency dependent signal to noise
ratio is proportional to the transfer function T(ν,ξ) which is zero at the dc-term and
very small for low frequencies, as seen from Eq. (7.42).

However, a careful analysis shows that the dominant term of the low frequent
background is of second order and that the maximum is close to the center of the
observation plane. This indicates that the strong image field curvature of the
microscope objective has caused the deviation. However, apart from this artefact
the field curvature is not detected at all because it has no significant effect on the

Fig. 7.12 A sequence of microscope images of the fibre in the container with relative distance of
a z- = −10 µm, b z0 = 0 µm and c z+ = 10 µm to the focal plane of the microscope objective

Fig. 7.13 Relative optical path of light transmitting a fibre measured by means of a TIE based
technique: a result of the numerical integration Eq. (7.48) and b after compensation of the low
frequent background by subtraction of a 5th order polynomial fit. The fit coefficients have been
calculated from the regions left and right to the fibre which are known to be constant
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intensity, revealing the weakness of the TIE approach with respect to smooth
wavefronts. In Fig. 7.13b we removed the background variations by subtraction of a
polynomial fit. The fit coefficients have been calculated from the regions left and
right to the fibre which were assumed constant.

Finally, for the interested reader we would like to refer to some interesting
alternative approaches to tackle the phase retrieval problem. Frank et al. [62],
suggest using the first Green’s identity and the Green’s function to calculate the
phase. The method requires the same observations and has almost the same
properties like techniques using the TIE. The main advantage is that it offers a
larger degree of freedom based on the selection of the particular Green’s function.
This can be used to adapt the phase retrieval problem to a priori knowledge about
the behavior of the phase along the edges of the observation area for example.

The work of Kolenovic [120] sheds light into the relationship between intensity
of a wavefield and the full vectorial representation of the phase gradient rather than
only the absolute value of the gradient as provided by the TIE. From his results it is
possible to derive the important statement that in the general case of an arbitrary
wavefield at least four intensity measurements are required to yield a unique
solution.

Agour introduced a hybrid approach by combining the advantages of deter-
ministic and iterative methods [267]. It is based on deriving a set of criteria from the
Helmholtz equation that are used to invoke additional constrains. The technique is
much faster converging compared to standard iterative phase retrieval and also finds
reasonable solutions if only a minimum of 4 intensity observations are at hand.

Recently, the scheme of Ptychography has been reported [192], which shares
large methodological similarities with phase retrieval. It is an iterative approach
based on intensity measurements of light scattered by a specimen. The intensity
observations correspond to different transverse positions of the sample, i.e. the
sample is laterally moved between the recordings. In contrast to phase retrieval,
Ptychography primarily aims at recovering the complex transmittance (or object
function) of the sample rather than the complex amplitude of a wavefield. However,
given the characteristics of the illumination, the complex transmittance of the object
can be directly related to the complex amplitude of the wavefield directly behind the
object.

7.3 Shear Interferometry for Wavefield Sensing

Shear interferometry is an interferometric method, but in contrast to classical
interferometry the wavefield under investigation is not superposed by a reference
wave but rather by a shifted copy of itself. The name shear denotes the shift.
Consequently, the interference pattern observed in the sensor plane of a shear
interferometer is given by
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IðrÞ ¼ uðrÞj j2 þ u rþ sð Þj j2 þ 2Re u�ðrÞ � u rþ sð Þf g; ð7:51Þ

where u(r) is the complex amplitude of the investigated wavefield, s is the shear
vector and r is a vector in the sensor domain. Many setups allow for introduction of
an artificial phase step between the wavefields, so that any phase shifting technique
can be used to extract the product in the third term of Eq. (7.51)

MðrÞ ¼ u�ðrÞu rþ sð Þ ¼ aðrÞa rþ sð Þ � exp iDuðrÞ½ �; ð7:52Þ

with Δφ(r) = φ(r + s) − φ(r) being the difference of the phase values at two points
separated by the shear. The great benefit of shear interferometry over other inter-
ferometric techniques is that it is very robust against environmental disturbances,
such as mechanical vibrations and thermal fluctuations. Due to the common path
principle it also has remarkably low demands with respect to the temporal and
spatial coherence of the investigated light. Indeed, the only requirement is that the
mutual intensity G(r,r + s) in the sensor domain at positions separated by the shear
is significantly different from zero

G r; rþ sð Þ ¼ u�ðrÞ � u rþ sð Þh iT [ 0: ð7:53Þ

Here, 〈…〉T denotes the time average. On the other hand, the great disadvantage
of shear interferometry is that the measurement only provides compound infor-
mation about the complex amplitudes at points separated by the shear. If the goal of
the investigation is associated with identification of the underlying wavefield itself,
this requires sophisticated numerical post processing of the measured data in order
to recover parts of the wavefield or even the entire complex amplitude.

Following our approach in phase retrieval, we will formulate the corresponding
inverse problems by means of objective functions which have to be minimized in a
least-squares sense. If the goal is solely recovering the phase distribution of the
wavefield, the task is to minimize

Lðf Þ ¼
X
n

wn rð Þ � f rþ snð Þ � f rð Þ½ � � Dun rð Þð Þk k2: ð7:54Þ

The subscript n denotes the number of the measurement where different shears sn
are evaluated in combination. The weighting function wn(r) can be used to express
confidence in the measured phase differences Δφn or to simply mark invalid regions.
The objective function Eq. (7.54) is well suited to cases in which the phase is
known to constitute a smooth and continuous wavefront, i.e. f(r) is a potential
function. If the measured differences exceed the range [−π,π], they have to be
unwrapped prior to the inversion process. The main applications of this scheme are
shape measurement for optical components and wavefront analysis for adaptive
optics.

If the entire complex amplitude is to be recovered we choose the following
objective function:
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L fð Þ ¼
X
n

Mn rð Þ � f � rð Þf rþ snð Þk k2: ð7:55Þ

Here the function f(r) is complex valued. Techniques minimizing Eq. (7.55) are
even capable of recovering wavefields with so-called phase singularities. Phase
singularities appear at all positions where the amplitude of a wavefield equals zero,
such as in speckle fields or diffracted light in general. In the vicinity of a phase
singularity, the phase distribution has a vortex-like structure and takes all values
from −π to π [11]. Consequently, the corresponding wavefields do not have smooth
wavefronts. The complex amplitudes obtained from minimization of Eq. (7.55) are
comparable to the results of phase shifting digital holography and allows for
numerical refocusing for example. In the following chapters we will explore both
problems Eqs. (7.54) and (7.55) separately and give examples of applications.

7.3.1 Wavefront Reconstruction

In wavefront reconstruction [88], it is assumed that the phase distribution φ(r) to be
recovered is a smooth and continuous function. This is a very strong constraint
providing great benefits in the inversion process. Depending on the shape of the
pupil function and the weighting we may distinguish two different approaches. If
the wavefront is to be recovered across a rectangular pupil and, if weighting
through wn(r) is not considered, the above mentioned smoothness constraint gives
rise to computationally very efficient direct Fourier methods to find an optimum
estimate of the wavefront [65]. If, however, the pupil function is irregularly shaped
or if weighting through wn(r) is required in general, Eq. (7.54) can still be iteratively
solved by means of gradient based methods.

Before we start discussing both of these options in detail, let us first consider the
uniqueness of the solution. The measurement described by Eq. (7.52) only provides
differences of the phase between two positions separated by the shear. Hence, if we
for example chose a periodic phase distribution φp(r) which has a period that equals
the shear, i.e. φp(r + s) = φp(r) we find that everywhere

DuðrÞ ¼ 0 ð7:56Þ

Apparently, shear periodic parts of the phase distribution are lost during the
shearing process. This implies that inversion based on measurements with a single
shear is not unique. In the past few decades, this has led to the development of
inversion methods for the recovery of phase distributions that consider strong
assumptions, such as a minimum curvature of the underlying wavefront [211] or a
priori knowledge about its specific structure [19, 54].

In the general case, we have to evaluate measurements with varying direction
and magnitude of the shear. In order to derive rules for the selection of the shears it
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is instructive to visualize the problem of uniqueness in Fourier space. For this, we
will reformulate the phase difference Δφ as a convolution with two Dirac
distributions:

DuðrÞ ¼ u rþ sð Þ � uðrÞ ¼ uðrÞ � d rþ sð Þ � dðrÞ½ � ð7:57Þ

Applying the convolution theorem [see Appendix A2, Eq. (A9)] we find for the
Fourier transform

FfDug ¼ Ffug � i2sin ps � vð Þexp ips � vð Þ ¼ Ffug � HðvÞ: ð7:58Þ

Hence, in case of wavefront analysis, the shear process can be described as a
linear shift invariant system with transfer function H(v), where v = (vi,vj)

T is a
vector in the Fourier domain. The structure of the transfer function can be seen from
Fig. 7.14 where the modulus |H(v)| is depicted. The frequencies which are not
transferred by the shear process correspond to the roots of H(v). They constitute
lines in the Fourier domain following

s � v ¼ n; ð7:59Þ

where n is an integer number. Hence, the shear operation does not transfer any
frequencies of the phase distribution that exhibit an integer number of full periods
along the shear. For such frequencies, the result of the subtraction in Eq. (7.56) will
always yield zero, regardless of the amplitude. Additionally, frequencies close to
the roots in the Fourier domain will only be transferred with a low signal-to-noise
ratio (SNR), which will have an effect on the smoothness of the inversion. It is
worth noting that for frequencies exhibiting an integer number of full periods along
the shear plus a half period, i.e.

s � v ¼ nþ 1
2
; ð7:60Þ
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Fig. 7.14 The absolute value
of the shear transfer function
|H(v)|. The roots correspond
to frequencies which are not
transferred by the shear
process
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the transfer function has a value of 2. This means that the shear process is very
sensitive to those frequencies.

Now we can choose the number, magnitude and the orientation of the shears
based on the signal-to-noise ratio in Fourier space, where the primary goal is to
avoid common roots of the corresponding transfer functions. The case corre-
sponding to three shears is illustrated in Fig. 7.15. The diagram shows the assumed
band B of the phase distribution φ to be recovered, i.e. those spatial frequencies
which are known to have a modulus significantly different from zero. The coloured
lines represent roots of transfer functions, where each colour is associated with one
transfer function. To ensure uniqueness, it is necessary that at no point in the band
do all of the colours intersect at the same time. An unavoidable exception to this
rule is the dc-term in the origin. The dc-term will never be transferred by any shear
operation. This has to be considered by the reconstruction process and simply refers
to the well-accepted fact that any differential approach can only recover a signal up
to an unknown constant. The same diagram can be used to ensure a sufficient signal
to noise ratio for all of the frequencies. In this case, the shears have to be selected in
a way that the intersections of the lines have maximum distance from each other. In
practice, it has proven useful to select shears in orthogonal directions and relative
prime magnitudes to each other.

If uniqueness up to a constant is ensured, we can recover the wavefront most
elegantly across a rectangular pupil function by means of an inverse filter in the
Fourier domain. However, we have to account for the expected pole at the dc-term.
Therefore we slightly reformulate the objective function Eq. (7.54) and, similar to
that in Sect. 7.2.3, add a Tikhonov-Regularization

vi

vj

s
1

B

Fig. 7.15 Example for the selection of the shears: the diagram shows the assumed band B of a
wavefront to be recovered. It is superposed with lines, where each color refers to the roots of one
of three shear transfer functions. A mandatory requirement for the uniqueness of the inversion is
that all three colors must not intersect at any point on the band
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Lðf Þ ¼
X
n

f rþ snð Þ � f rð Þ½ � � mn;e rð Þ�� ��2 þ a f rð Þk k2 ð7:61Þ

in order to select the solution with minimum norm. Here, mn,ε(r) = Δφn(r) + εn(r) de-
note the observations with additive noise εn(r) and we assume no weighting, i.e.
wn(r) = 1 everywhere. Minimization of Eq. (7.61) is straight forward in the Fourier
domain. We therefore use Eq. (7.57) on f(r) and employ Parseval’s theorem

LðFÞ ¼
X
n

F vð ÞHn vð Þ �Mn;e vð Þ�� ��2 þ a F vð Þk k2: ð7:62Þ

To find the optimum F which minimizes L we calculate the gradient and set it to
zero:

oL
oF vð Þ ¼ 2

X
n

H�
n F � Hn �Mn;e

 �þ aF ¼ 0: ð7:63Þ

Finally, solving the equation for F(v) yields an analytic expression for the
Fourier transform of the optimum wavefront in a least squares sense:

FðvÞ ¼ 1P
n Hn vð Þj j2þa

�
X
n

Mn;eðvÞ � H�
nðvÞ: ð7:64Þ

From this result, the phase can be recovered by a simple inverse Fourier
transform. The regularisation parameter α avoids over-fitting in close vicinity to the
pole at v = 0 and has to be chosen inversely proportional to the signal-to-noise ratio.

An implicit assumption made when using the Fourier transform in Eq. (7.64) is
that the measured phase differences Δφ(r) are known across the entire spatial
domain. In practice, discrete sensing devices such as CCD cameras with a limited
spatial extent are used, which means that the sheared representations of the
wavefront are only known across a limited pupil function. In those cases we have to
use the discrete Fourier transform (DFT) which inherently extends the measure-
ments to periodic distributions, which we will denote by Δφp(r). This causes serious
problems if the area where Δφ(r) is significantly different from zero is not spatially
limited to the sensor device. In this case, the periodic function Δφp(r) assumed by
the DFT does not appear to be the result of a shearing process, because the phase
differences across the boundary of the pupil function contain wavefront data from
outside of it.

An elegant method to solve this problem is called natural extension and has been
reported by Elster and Weingärtner [51]. It works on rectangular pupils with all
shears aligned parallel to any of the edges. Additionally, the spatial extend of the
rectangular pupil has to equal a multiple N of the shear-magnitude in the corre-
sponding direction. The idea is to modify the phase values across the border region
of Δφ(r), letting the periodic functions Δφp(r) appear to be sheared representations
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of a periodic wavefront φp(r) that equals the wavefront φ(r) across the pupil. In
order to find the correct values for the modification, consider the fortunate situation
in which the investigated wavefront φ(r) is already inherently periodic, i.e. across
the pupil area φp(r) = φ(r) holds. An interesting property of these distributions is
given by the sum along a set of points separated by the shear. It is straightforward to
show that it yields zero, i.e.

XN�1

n¼0

uP rþ n � sð Þ ¼ 0: ð7:65Þ

In general, the wavefront under investigation is not inherently periodic, and the
measured distributions are not expected to fulfill the constraint given by Eq. (7.65).
However, in order to force periodicity, the coefficients located on the boundary of
the pupil can be modified accordingly to arrive at the naturally extended distribu-
tion. In terms of the noisy observations mε(r) we may write

mP rð Þ ¼ �PN�2
n¼0 me rþ n � sð Þ; N sj j[ s

sj j � r	ðN � 1Þ sj j
me rð Þ; everywhere else

:

�
ð7:66Þ

The results of Eq. (7.66) can be inserted into Eq. (7.64) in order to reconstruct
the wavefront across the limited area.

In the following we will present results of a numerical simulation in order to
demonstrate the method. In Fig. 7.16a, b we see amplitude and phase of a wave-
field. The amplitude is a normalized Gaussian distribution which drops off to 4 % of
its maximum value in the edges. The corresponding phase distribution has a
checkerboard like appearance with a phase difference of π/2 between dark and

Fig. 7.16 Numerical simulation: a amplitude and b phase of the wavefield used for the numerical
simulation of the shear process. The amplitude is a normalized Gaussian distribution which drops
off to 4 % of its peak value in the borders. The phase has a checkerboard structure with steps of π/2
between the dark and light fields
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bright fields. All distributions have a size of 510 by 510 sampling points. We
simulated four phase shifted shear experiments with the shears set to s1 = (5,0),
s2 = (0,5), s3 = (51,0) and s4 = (0,51) sampling points. For the phase shifting we
used a four frame algorithm with 90° phase shift between the frames. The camera
simulation comprised Poisson noise assuming a full well capacity of 500 electrons
and an average dark current of 4 electrons.

In Fig. 7.17a, b we see the resulting noisy phase differences mp,3(r) and
mp,4(r) of the simulated shear process for s3 and s4. The size and the orientation of
the shears can be seen from the arrow marks. The values marked by the box and the
shaded area have been calculated using the natural extension Eq. (7.66). Towards
the edges we see increasing noise which arises from the reduced signal-to-noise
ratio caused by the dominant Poisson noise in regions of low intensity on the phase
shifted interference patterns.

The result of the inversion process using the Fourier approach based on
Eq. (7.64) is shown in Fig. 7.18a. The checkerboard structure of the wavefront is
clearly seen from the central region of the reconstruction. Towards the edges the
noise level increases. This is a consequence of the low signal-to-noise ratio owing
to the comparably low amplitude of the wavefield in these regions. In Fig. 7.18b the
residual after subtraction of the known checkerboard structure is shown. To high-
light the structure of the noise, the range of values is reduced by a factor of 5. Again
we see the noise level increasing towards the corners with low SNR. Additionally,
we can also see periodic distortions. This is typical for approaches operating in
Fourier space. Since the inversion process is spatially independent, frequency
dependent noise will be distributed across the entire spatial domain. As a conse-
quence, we see shear-periodic artefacts in the reconstructed wavefront, because the
signal-to-noise ratio of the shear process is frequency dependent. However, the
standard deviation of the differences within the marked area is σ = 0.035 rad and,

Fig. 7.17 Numerical simulation: phase difference based on 4 phase shifted shear interferograms
with the shear set to a s3 and b s4. The shear is illustrated by the arrow marks. The shaded region
bounded by the box indicates the area in which the values have been calculated using the natural
extension Eq. (7.66)

7.3 Shear Interferometry for Wavefield Sensing 169



therefore, still shows very good agreement between the initial and the reconstructed
wavefront.

To avoid the periodic artefacts seen from Fig. 7.18b, we can introduce a noise
dependent weighting through the weighting functions wn(r). As seen from Eq.
(7.52), the phase shifting process provides us with the cross amplitudes a(r) a
(r + s), which correspond to the modulation depth of the interference pattern.
Hence, they can be regarded as a measure for the signal to-noise-ratio and we may
set wn(r) = a(r) a(r + sn). However, we cannot minimize Eq. (7.54) in the Fourier
domain anymore, because of the non-linear characteristics of the weighting. Instead
we will opt for an iterative non-linear optimization approach based on the steepest
descent gradient method.

As mentioned before in Sect. 7.2.2, the basic idea of gradient search methods is
to start with an initial guess, which is then iteratively improved by following the
opposite direction of the gradient of the current estimate with respect to the
parameters of interest. In our case we find for the successor

f ðkþ1ÞðrÞ ¼ f ðkÞðrÞ � aðkÞ � rL kð ÞðrÞ; ð7:67Þ

where the index k denotes the iteration and the scalar α(k) is the step length of the kth
iteration. By using Eq. (7.54) and employing the observations incorporating the
noise terms mn,ε(r) = Δφn(r) + εn(r) rather than merely the phase differences
Δφn(r) we obtain the gradient

rL kð ÞðrÞ ¼ oL
of ðkÞ rð Þ ¼ �2

X
n

wnðrÞ Dnf
kð Þ rð Þ � mn;e rð Þ

h

þmn;e r� snð Þ � Dnf
kð Þ r� snð Þ

i
;

ð7:68Þ

Fig. 7.18 Numerical simulation: a result obtained from the numerical inversion based on the
Fourier approach Eq. (7.64) and b residual after subtraction of the known checkerboard structure
of the phase. The standard deviation within the marked area is σ = 0.035 rad
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where we have introduced Δnf(r) = f(r + sn) − f(r) for brevity. The great benefit of
this approach is that the gradient incorporates spatially resolved information about
the measurement uncertainty which we have at hand anyway. We can demonstrate
this advantage by looking at the reconstructed wavefront in Fig. 7.19a which was
obtained after 200 iterations of Eq. (7.67). Visually it looks very similar to the one
shown in Fig. 7.18a. However, if we look at the residual after subtraction of the
known checkerboard structure in Fig. 7.19b we see that the periodic artefacts
disappeared in those regions in which the wavefield has high intensities and the
interference patterns consequently provide good signal-to-noise ratio. The standard
deviation of the residual is now σ = 0.017 rad which is more than 3 dB better than
the reconstruction based on the Fourier method. Additionally, pre-processing of the
measured data by the natural extension is not necessary. The drawback of the
method is the computational effort. It took a standard quad core CPU running at
2.53 GHz and equipped with 4 GB RAM approximately 1 min to perform the 200
iterations under MatLab.

Furthermore it is also possible to reconstruct the wavefront only across spatially
limited pupil functions. This can be achieved by simply setting the weighting to
zero outside the region of interest. An example is shown by Fig. 7.20a where the
wavefront is reconstructed across two separated ring shaped pupils. Note though,
that separation of individual regions is not a problem as long as neighboring regions
overlap during at least one of the shear measurements. In Fig. 7.20b we see again
the residual after subtraction of the known wavefront, showing no periodic dis-
tortions and no ringing at the edges.

Even if the objective function Eq. (7.54) is non-linear in the weighting, it is still
possible to prove that any gradient based approach like the one given by Eq. (7.67)
will eventually converge to a unique optimum solution in the least-squares sense.
This follows from the fact that L(f) is a convex function, which means that it only

Fig. 7.19 Numerical simulation: a result obtained from the numerical inversion based on 200
iterations of the steepest descent gradient method Eq. (7.67) and b residual after subtraction of the
known checkerboard structure of the phase. The standard deviation within the marked area is
σ = 0.017 rad
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exhibits a single global minimum. For a function to be convex it has to be ensured
that the line segment connecting any two points of the function lies entirely above
(or below) the function graph. This situation is depicted by Fig. 7.21. Formally, this
requires for any of the potential solutions f(r) and g(r):

L a � gþ 1� að Þfð Þ� a � L gð Þ þ 1� að ÞL fð Þ; ð7:69Þ

for any α between 0 and 1. It seems intuitively clear and straight forward to prove
that a quadratic function q(x;b) = (x − b)2 with constant shift b is convex and
therefore satisfies

Fig. 7.20 Numerical simulation: a reconstruction of the wavefront across a pupil function based
on 200 iterations of the steepest descent gradient method Eq. (7.67) and b residual after subtraction
of the known checkerboard structure of the phase

L(αg+(1-α)f)

L(f)

α

L(g)

0 1

αL(g)+(1-α)L(f)

Fig. 7.21 Example of a
convex function L: for any f,
g and α, the graph of the
function is below or equal to
the line segment connecting
L(f) and L(g)
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q a � yþ 1� að Þx; bð Þ� a � q y; bð Þ þ 1� að Þq x; bð Þ: ð7:70Þ

To prove that Eq. (7.69) holds we will reduce it to the statement given by
Eq. (7.70). Indeed we can reformulate the objective function Eq. (7.54) as a sum of
functions, which are quadratic in Δf(r):

L fð Þ ¼
X
n

X
r

q
ffiffiffiffiffiffi
wn

p � Dnf ; bnð Þ; ð7:71Þ

where the constant is given by bn(r) = wn(r)
0.5m(r) and we have omitted the explicit

dependence on r for brevity. It is also straight forward to show that

L a � gþ 1� að Þfð Þ ¼
X
n

X
r

q a
ffiffiffiffiffiffi
wn

p
Dngþ 1� að Þ ffiffiffiffiffiffi

wn
p

Dnf ; bnð Þ: ð7:72Þ

If we express L(f) and similarly L(g) by means of Eq. (7.71) and insert it together
with Eq. (7.72) into Eq. (7.69), we can apply inequality Eq. (7.70) to any combi-
nation of n and r by substituting x = wn(r)

0.5Δnf(r) and y = wn(r)
0.5Δng(r). Hence the

inequality also holds for the entire sum, proving L(f) to be convex.
Finally, we would like to present experimental results which demonstrate the

remarkable low coherence requirements of shear interferometry. As seen from
Eq. (7.53) it is sufficient that the mutual intensity G(r,r′) is significantly different
from zero at any two points r and r′ = r + s separated by the shear. This enables the
application of a broader range of light sources, such as liquid crystal matrix displays
(LCD) for example [56]. To verify this, we will first describe the intensity distri-
bution IM(v) of light emitted by an LCD monitor as follows

IM vð Þ ¼ comb
vi
Dp

;
vj
Dp

� �
� rect

vi
p
;
vj
p

� �� 

� rect vi

D
;
vj
D

� 	
: ð7:73Þ

Here, v = (vi,vj)
T is a position vector, Δp is the pixel pitch, p is the size of the

active area of a pixel, D is the size of the display, comb(α,β) = comb(α)comb(β) and
rect(α,β) = rect(α)rect(β).

We can assume that the statistical properties of the emitted light are spatially
stationary, i.e. do not vary in space. In this case G(r,r + s) = G(s) only depends on
s and we can employ the Van Cittert-Zernike theorem to describe the relationship
between the intensity distribution IM(v) and the mutual intensity G(s) in any parallel
plane at distance z, which has to be large compared to the extent of the light source

G sð Þ ¼
ZZ

IM vð Þexp i
2p
kz

s � v
� 


dvidvj: ð7:74Þ

This is a scaled Fourier transform and we can insert Eq. (7.73) to obtain
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GðsÞ ¼ comb
si � Dp
kz

;
sj � Dp
kz

� �
sinc

si � p
kz

;
sj � p
kz

� �� 

;

� sinc
si � D
kz

;
sj � D
kz

� � ð7:75Þ

where sinc(α,β) = sinc(α)sinc(β). By looking at the comb-function in Eq. (7.75) we
see that G(s) has a periodic structure and that it is indeed possible to perform shear
interferometry if the shear s satisfies

s ¼ n
kz
Dp

;m
kz
Dp

� �T

; ð7:76Þ

where n and m are integers. Having said this, we recognize that the first set of sinc-
functions depending on p envelops the comb-function. Monitor pixels with small
active areas are therefore preferable because the sinc-functions drop to zero for
either si = λz/p or sj = λz/p. The worst case occurs when the pixel pitch equals the
active area i.e. Δp = p, and the requirement Eq. (7.76) coincides with the zeroes of
the sinc-functions. However, in this situation it is not pertinent to speak of a matrix
display but rather of a spatially distributed light source of size D. The second set of
sinc-functions broadens the individual spikes of the comb-function proportional to
λz/D, and therefore defines the degree of freedom within variation of the shear can
be tolerated. Large variations, however, can only be realized with small light
panels.

The shear-interferometer we used for the experiments is seen from Fig. 7.22.
Similar to the setup for phase retrieval it is based on a 4f-configuration with a liquid
crystal spatial light modulator (SLM) in the Fourier domain [55]. Here, we exploit

Lens

Lens

Polarizer

CCD

SLMObjectLCD Display Polarizer

Fig. 7.22 An experimental setup for shear interferometry based on a spatial light modulator
(SLM) in the spectral domain of a 4f-setup. For further details please refer to the text
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the birefringent properties of an SLM, i.e. that light polarized along its slow axis
will be diffracted while light polarized along the fast axis will be simply reflected
from the back panel. We polarize the incident light exactly between the slow and
the fast axis using the polarizer and let the SLM generate a blazed diffraction
grating which exhibits a single diffraction order. Hence, two orthogonally polarized
and mutually shifted images will appear in the sensor domain, where the shift can
be electronically selected by the orientation and the period of the blazed grating
generated by the SLM. The polarizing analyser in front of the camera is required to
let the two images interfere. The main advantage of this configuration is its con-
siderable tolerance against environmental disturbances and a fast, precise and
highly reproducible adjustment of the shear. Additionally, the SLM can be used for
temporal phase shifting.

The object under investigation was a 10 mm thick glass plate with refractive
index of n612 = 1.516 and a parabolic indentation in its centre. The indentation has a
diameter of 5 mm and a height of approximately 4 µm. The aim of the experiment is
to determine the exact height of the deformation by measuring the optical path of
light traveling through the object. The LCD matrix display of an Apple iPhone 4S is
used as a light source at a distance of 68 mm from the object. The pixel pitch of the
LCD is approximately 78 µm. However, for the sake of light efficiency we com-
bined 2 by 2 LCD pixels creating a periodic illumination with a respective active
area of size p = 156 µm and a pixel pitch of Δp = 234 µm. We only used red pixels
which emit light at a central wavelength of λ = 612 nm. The size of the periodic
illumination was D = 15 mm in any direction giving us only a small degree of
freedom to vary the shear. We performed 4 phase shifting shear experiments
M1(r) − M4(r) with the shears set to 50 and 51 camera pixels in horizontal and
vertical direction respectively, where the camera has a pixel pitch of 3.45 µm.

Figure 7.23a, b show by example the measured amplitude and phase difference
for the shear set to 50 sensor pixels in horizontal direction. In regions were the
objects surface exhibits steep gradients we see that the amplitude is comparably

Fig. 7.23 Example of a phase shifted measurement with the shear set to 50 sensor pixels in
horizontal direction: a amplitude and b phase of the cross term M1(r) [see Eq. (7.52)]
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low, which demonstrates the influence of the objects shape on the mutual intensity
in the sensor domain. Furthermore, we see periodic distortions which indicate a
residual spatial dependence of the mutual intensity owing to the fact that the light
source is relatively close to the object plane. The measured phase differences in
Fig. 7.23b are dominated by straight fringes which arise from the spherical waves
emerging from each of the LCD pixels. Since this is an artefact of the illumination
we performed a linear fit with coefficients taken from regions assumed to be flat in
vicinity to the indention. The result is seen from Fig. 7.24a. The distributions
corresponding to all four shears have been subjected to the iterative reconstruction
scheme constituted by Eq. (7.67). From the resulting estimate f(k) of the phase it is
possible to calculate the height of the object by

hðrÞ ¼ k
2p n612 � n0ð Þ f

ðkÞðrÞ; ð7:77Þ

where the refractive index of air can be assumed n0 = 1.
The result for k = 2,000 iterations can be seen from Fig. 7.24b. The profile

indicates a depth of the indention of dS = 3.72 µm (peak-to-valley) along the dashed
line. This shows very good agreement with the result of a comparison measurement
at the Physikalisch Technische Bundesanstalt (PTB) using a calibrated Fizeau
interferometer, which yielded dF = 3.67 µm. The standard deviation of the wave-
front estimation is σ = 0.008λ, where the largest deviations are caused by a periodic
pattern arising from the residual spatial dependence of the complex mutual intensity
seen from Fig. 7.23a. This example shows the remarkably low demands of shear
interferometry with regard to coherence requirements. It is possible to achieve
interferometric accuracy even when light of an LCD monitor is used.

Fig. 7.24 Experimental results: a the phase of M1(r) after subtraction of the linear fringes caused
by the spherical illumination waves and b the shape of the indention calculated from the
reconstructed the wavefront by means of Eq. (7.77)
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7.3.2 Computational Shear Interferometry

In the preceding section we have presented methods to recover a smooth wavefront
from measurements based on a shear interferometer. However, in many applications
it is favorable to determine the entire complex amplitude of a monochromatic
wavefield. For example, in all cases in which diffracted light or speckle fields are
investigated, it cannot be assumed that the corresponding wavefront is smooth.
Indeed there are only specific situations in which the smoothness assumption is
valid.

In the following we will refer to methods which aim at recovering the full
complex amplitude of monochromatic wavefields by means of a shear interfer-
ometer as computational shear interferometry (CoSI). In adaptive optics, Fried has
reported on a heuristic method to recover the complex amplitude of a wavefield
[66]. It works on square pupil functions with a size of 2N + 1 times 2N + 1 samples
and requires two orthogonal shears with magnitude of a single pixel oriented along
the main axes of the sampling device. For standard interferometric applications,
such as speckle interferometry or quantitative phase imaging it is probably more
convenient to directly minimize Eq. (7.55), for example by means of gradient based
techniques [57]. This has the advantage that the orientation and the magnitude of
the shears can be freely chosen as long as the uniqueness of the solution is ensured,
that the inversion can be performed on arbitrarily shaped pupil functions and that
additional pre-knowledge can be easily added by means of regularization. In this
section, we will therefore discuss an approach based on the steepest descent gra-
dient method and give some experimental examples demonstrating the capabilities
of CoSI.

We have used gradient based approaches already in Sects. 7.2.2 and 7.3.1. The
basic iterative scheme is well represented by Eq. (7.67) with the difference that the
estimates f(k)(r) are complex valued amplitudes rather than scalar phase values and
that the gradient has to be derived from Eq. (7.55). The latter is not a straight
forward task, because L(f) is not an analytic complex function, i.e. it is not holo-
morphic, but rather a real valued function which depends on the complex variable f
(r) = fR(r) + ifI(r), exhibiting a real part fR(r) and an imaginary part fI(r). As a
consequence, the derivative

dL
df

¼ lim
Df!0

L f þ Dfð Þ � L fð Þ
Df

; ð7:78Þ

does not exist, because it depends on the direction from which Δf approaches zero.
In this unfortunate situation we may remember that the intention behind calculation
of the gradient was to determine the variation of the value of L with respect to
variation of the parameter f. Having this in mind, we may define
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rL ¼ dL
df

¼ oL
ofR

þ i
oL
ofI

; ð7:79Þ

as a helpful tool to substitute for the non-existent gradient. Please note that
according to Eq. (7.79) for g(z) = z we find dg/dz = 0. It is therefore not an
admissible definition of a complex derivative but rather provides a mapping of the
complex plane onto two dimensional Cartesian coordinates. However, the partial
derivatives make it feasible to define a direction in the complex plane along which
the value of L increments most and we may use it in Eq. (7.67). Inserting Eq. (7.55)
into Eq. (7.79) yields

rL kð Þ rð Þ ¼ �2
X
n

f ðkÞ rþ snð Þw kð Þ�
n rð Þ þ f ðkÞ r� snð Þw kð Þ

n r� snð Þ; ð7:80Þ

where

wðkÞ
n rð Þ ¼ Mn rð Þ � f kð Þ� rð Þf ðkÞ rþ snð Þ; ð7:81Þ

and Mn(r) according to Eq. (7.52). To discuss the uniqueness of solutions to Eq.
(7.55) we will set the gradient to zero and arrive at an implicit definition of the
solution

f rð Þ ¼
P

n f rþ snð Þ �M�
n rð Þ þ f r� snð Þ �Mn r� snð ÞP

n f r� snð Þj j2þ f rþ snð Þj j2 ; ð7:82Þ

In case of a single measurement n = 1 we see that if f(r) is a solution, then any g
(r) = f(r)exp[iϕp(r)] is a solution as well, where ϕp(r) is an arbitrary shear periodic
function ϕp(r + s) = ϕp(r). Furthermore if f(r) is a solution, then any g(r) = ap(r) f
(r) is a solution as well, where ap(r) is a periodic real valued function for which
ap(r + s) = 1/ap(r) holds. We see that, similar to that in wavefront reconstruction
(Sect. 7.3.1), the inversion is not unique when only a single shear is considered.
Again, the unambiguity is related to the period of the shear and we may ensure the
uniqueness of the solution by evaluating the results of several measurements with
varying orientations and magnitudes of the shear in combination. Also here, a good
choice is to select orthogonal shears of which the magnitudes are relatively prime.

A major difference between wavefront reconstruction and wavefield recon-
struction in computational shear interferometry is that the objective function Eq.
(7.55) is not convex. Hence it has multiple local minima in which any gradient
based approach can become trapped. At which of the stationary points the algorithm
eventually arrives depends on the initial guess f(0)(r). A Kronecker delta distribution
has been shown to be a good initial guess
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f ð0Þ rð Þ ¼ 1; r ¼ r0
0; elsewhere

�
: ð7:83Þ

The basic functionality can be best understood from looking at the form of the
gradient in Eq. (7.80). It can be seen that only those parts of the current estimate
f(k)(r) will be changed during the iteration which have at least one nonzero value in
their neighbourhood, where the neighbourhood is defined by the shear. This shows
that the choice of a Kronecker delta as an initial guess starts the reconstruction
process at point r0 and progresses in outward direction for consecutive iterations.
The procedure behaves as a path-dependent approach, which walks all available
paths at the same time and additionally balances accumulated errors between them.
Even though we cannot prove it formally, we conjecture in many cases from
simulations and comparison measurements with standard interferometry that the
approach finds the global minimum, or at least a solution very close to it.

In addition, we can add further pre-knowledge to the optimization process. A
simple example is to constraint the solution to a smooth function by means of
regularization. Please note that the complex amplitude is a solution to the Helm-
holtz-Equation and therefore is always smooth even if the corresponding wavefront
is not. Smoothness can be constraint by adding a minimum curvature term to the
objective function

L fð Þ ¼
X
n

Mn rð Þ � f � rð Þf rþ snð Þk k2 þ c DDf rð Þk k2: ð7:84Þ

Here, γ is the regularization parameter. Large values of γ will yield very smooth
estimates of the wavefield. The discrete Laplacian ΔD for a two dimensional discrete
function g(x,y) is given by

DDg x; yð Þ ¼ g xþ 1; yð Þ þ g x� 1; yð Þ
þ g x; yþ 1ð Þ þ g x; y� 1ð Þ � 4g x; yð Þ: ð7:85Þ

The corresponding gradient is calculated by inserting Eq. (7.84) into Eq. (7.89)
which yields

rLðkÞS ðrÞ ¼ rL kð ÞðrÞ þ 2cDD DDf
ðkÞðrÞ

n o
: ð7:86Þ

The setup shown in Fig. 7.25 was used to demonstrate the potential of com-
putational shear interferometry for wavefield sensing. On the right hand side we see
an SLM-based shear interferometer, similar to the one introduced in Fig. 7.22. The
object is a dice with an edge length of 8 mm as seen from the detail. It is positioned
in a distance of d = 130 mm from the input plane of the shear interferometer. The
aim of the experiment is to measure the complex amplitude of the wavefield
scattered by the object. Shear interferograms were recorded with the shears set to
17 and 20 camera pixels in the horizontal and vertical directions, respectively.
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A four-frame 90° phase-shifting algorithm was used to determine the observations
M1(r) − M4(r) from a total of 16 recorded interferograms.

In order to compare the results with those obtained from standard interferometry,
a beam splitter can be used to superpose the wavefield in the sensor domain with a
plane reference wave. In this configuration, the polarization is selected towards the
slow axis of the SLM using the half-wave plate, thus turning it into a phase shifting
device. The light source is a laser emitting light at λ = 532 nm.

In Fig. 7.26a, b we see amplitude and phase, respectively, of the wavefield
across the input plane of the shear interferometer as obtained after 150 iterations of
Eq. (7.67) with the gradient Eq. (7.86), γ = 2 and a Kronecker delta as initial guess.
As seen from the detail in Fig. 7.26b, the phase distribution does not constitute a
smooth wavefront but rather exhibits a large number of phase singularities.

In Fig. 7.27a the difference between the phase distribution obtained from
computational shear interferometry and standard phase shifting interferometry is
shown. The standard deviation is σ = 0.68 rad, indicating very good agreement.
Similar to what is done in phase shifting digital holography we can use the
wavefield so found to reconstruct the object by numerical propagation into the
object plane. The result is depicted by Fig. 7.27b where the object is clearly seen to
be in focus.

The low demands on coherence make it feasible to record digital phase shifted
holograms of rough objects using LED illumination. This can be seen from
Fig. 7.28a, b, where the amplitude and the phase, respectively, of light scattered by

Input plane Lens

Lens

λ/2

Polarizer

CCD

SLM

Beam
splitter
(opt.) Aperture

Object

130 mm

Reference
wave (opt.)

Illumination

Fig. 7.25 An experimental setup to demonstrate computational shear interferometry: the aim of
the experiment is to determine the complex amplitude of light scattered by the dice object using
shear interferometry. The beam splitter can be used to optionally superpose the wavefield in the
sensor domain by a plane reference wave in order to compare the results of CoSI with those of
standard phase shifting interferometry. For further details on the setup please refer to the text
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a 1 cent Euro coin is shown. The light source was a fibre coupled LED with a
coherence length of lc = 10 µm and a fibre diameter of df = 200 µm. Again, four
phase shifted measurements with the shears selected to 3 and 5 pixels in both,
horizontal and vertical direction were evaluated in combination. To arrive at the
shown complex amplitude k = 950 iterations of Eq. (7.67) with gradient Eq. (7.86)
and γ = 2 were required. The object was positioned approximately 5 mm away from
the front focal plane of the shear interferometer. Hence the reconstructed amplitude
in Fig. 7.28a appears to be a blurred representation of the coins surface. To verify

Fig. 7.26 Reconstructed complex amplitude after 150 iterations: a normalized amplitude and
b phase of the light scattered by the dice. The size of the distributions is 680 × 680 sensor pixels,
with a pixel size of Δp = 3.45 µm. This result is comparable to a phase shifted digital hologram

Fig. 7.27 a Difference between the phase distributions obtained from CoSI and standard phase
shifting interferometry. The standard deviation is σ = 0.68 rad which shows very good agreement.
None of the singularities has been wrongly detected by the iterative algorithm. b Resulting
intensity after numerical propagation of the wavefield by d = 130 mm in the object plane. The
object is clearly seen to be in focus, similar to what is expected from the reconstruction of a digital
hologram
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the correctness of the result, the intensity after propagation of the wavefield by
5.3 mm towards the object plane is seen in Fig. 7.29a, showing the object clearly in
focus. For comparison, Fig. 7.29b depicts a photo of the object with the investigated
region of the surface marked by the box.

The above results indicate that CoSI can be used in a large number of situations
in which phase shifting interferometry or phase-shifting digital holography are
applied. Yet no reference wave is required which offers all the benefits obtained
from a common path approach, such as robustness against environmental distur-
bances and comparably low demands regarding the spatial and the temporal
coherence of the investigated wavefield. In contrast to phase retrieval no inherent
diversity is required so that smooth wavefronts and speckle fields can be measured
by the same method.

Fig. 7.28 The complex amplitude of light scattered by a coin under LED illumination measured
by means of computational shear interferometry: a normalized amplitude and b phase of the light.
The size of the distributions is 700 × 700 sensor pixels, with a pixel size of Δp = 6.9 µm

Fig. 7.29 Object in focus: a intensity distribution across the object plane as obtained after
numerical propagation of the complex amplitude in Fig. 7.28 by 5.3 mm and b the object with the
investigated region marked by the box
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7.4 Shack-Hartmann Wavefront Sensing

Shack-Hartmann [80, 212] sensing is mainly used to determine smooth wavefronts.
This is done by means of a lens array in front of a camera sensor, where the distance
between the sensor and the array is given by the focal length f of the lenses. This
configuration can be seen from Fig. 7.30. The angles α(r) and β(r) that the wave-
front includes with the axes of the sensing device depend on its local slope. This
causes a shift d of the respective focal spot according to

d rð Þ ¼ f
cot a rð Þ
cot b rð Þ

� �
: ð7:87Þ

The shifts are proportional to the local phase gradient

r/ðrÞ ¼ 2p
k

cos a rð Þ
cos b rð Þ

� �
� 2p

kf
dðrÞ; ð7:88Þ

where we have used the approximation cos(α) ≈ cot(α) for α ≈ 90°, which means
small angles of the incident light with respect to the optical axes of the lenses.
Similar to what we have done in phase retrieval and in shear interferometry, we may
recover the wavefront by numerical integration in the Fourier domain. The transfer
function of differentiation can be deduced from Eqs. (7.40) and (7.41) and is given
by Hx(ν,ξ) = i2πν and Hy(ν,ξ) = i2πξ. For integration, we can reformulate the
minimum norm least square approach constituted by Eq. (7.64)

F m; nð Þ ¼ Mx;e m; nð Þ � H�
x m; nð Þ þMy;e m; nð Þ � H�

y m; nð Þ
Hx m; nð Þj j2 þ Hy m; nð Þ�� ��2 þ a

ð7:89Þ
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Wave front Lens array SensorFig. 7.30 Principle of Shack-
Hartmann wavefront sensing:
the slope of the wavefront
shifts the focal spots of the
lens array. The shift is
detected by a camera sensor
and is proportional to the
phase gradient
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where Mx,ε(ν,ξ) = F{∇ϕx(r) + εx(r)} and My,ε(ν,ξ) = F{∇ϕy(r) + εy(r)} are the
Fourier transforms of the observations of the gradient in x and y direction respec-
tively, and εx(r) and εy(r) describe additive stationary noise. From F(ν,ξ) the
wavefront f(r) = F−1{F(ν,ξ)} can be obtained by an inverse Fourier transform.

When it can be assumed that the wavefront under investigation is rotationally
symmetric or merely shows comparably small variations, it is common practice to
derive an optimum set of Zernike coefficients from the measured slopes [188]. If
phase singularities are present, the phase distribution of the wavefield can no longer
be described by a smooth function. In this case, similar to what we have discussed
in computational shear interferometry, more sophisticated iterative techniques have
to be applied [14]. Finally we would like to mention that evaluation of the intensity
across the focal spots also allows estimating the corresponding amplitude and
therefore facilitates the determination of the full complex amplitude of the under-
lying wavefield [160].

The major advantage of Shack-Hartmann sensors is that they are very fast. They
only require a single camera frame to estimate the wavefront and are widely used to
determine the wavefront slopes of light travelling through the atmosphere. The
measured data is used as a control in adaptive optics which compensate for dis-
tortions caused by turbulence thereby enhancing the seeing of earth bound tele-
scopes. Having said this, a major disadvantage is the low space-bandwidth-product
due to the fact that a large number of camera pixels (typically 10 by 10) have to be
sacrificed for one sampling point of the Shack-Hartmann sensor. As a consequence,
common devices only provide 100 by 100 sampling points. Furthermore, the
maximum angle is limited because of the imaging properties of the lenses and in
order to avoid cross-talk between neighbouring sampling points. Over the past few
years, strategies have been developed to compensate for these drawbacks. Seifert
et al. suggest creating an array of virtual lenses by means of a liquid crystal spatial
light modulator (SLM) instead of a fixed lens array [209]. The focal length of the
virtual lens array can be actively controlled thereby enhancing the dynamic range of
the sensor with respect to the maximum angle. A similar approach is reported by
Hongbin et al. [87] using an array of fluidic micro lenses instead of an SLM. To
compensate for lens aberrations under large incidence angles Grunwald et al. [76]
suggest using an array of micro-axicons instead of micro lenses. The corresponding
sensor enables detection of wavefront slopes within a range ±30° which is currently
the technical limit.
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Chapter 8
Speckle Metrology

8.1 Electronic Speckle Pattern Interferometry (ESPI)

Electronic Speckle Pattern Interferometry (ESPI) is a method, similar HI, to mea-
sure optical path changes caused by deformation of opaque bodies or refractive
index variations within transparent media [82, 147]. In ESPI electronic devices
(CCD or CMOS) are used to record the information. The speckle patterns which are
recorded by an ESPI system can be considered as holograms of focused images and
are formed in the image plane. Due to the digital recording and processing, ESPI is
also known as Digital Speckle Pattern Interferometry (DSPI) or TV-holography.
However, instead of hologram reconstruction the speckle patterns are correlated.

The principal set-up of an Electronic Speckle Pattern Interferometer is shown in
Fig. 8.1. The object is imaged onto a camera by a lens system. Due to the coherent
illumination the image formed is a speckle pattern. According to Eq. (2.57) the
speckle size depends on the wavelength, the image distance and the aperture
diameter. For good imaging, the speckle size should be of the same order as the
pixel size (resolution) of the electronic sensor. This can be achieved by closing the
aperture of the imaging system.

The speckle pattern of the object surface is superimposed on the target with a
spherical reference wave. The source point of the reference wave should be located
in the centre of the imaging lens. Due to this in-line configuration the spatial
frequencies are resolvable by the sensor. In practice the reference wave is coupled
into the set-up by a beam splitter (as shown in Fig. 8.1) or guided via an optical
fibre, which is mounted directly in the aperture of the lens system.

The intensity at the target is:

IA x; yð Þ ¼ aR x; yð Þ exp iuRð Þ þ aO x; yð Þ exp iuOð Þj j2
¼ a2R þ a2O þ 2aRaO cos uO � uRð Þ

ð8:1Þ
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where aR exp iuRð Þ is the complex amplitude of the reference wave and aO exp iuOð Þ
is the complex amplitude of the object wave in the image plane. The term
uO � uRð Þ is the phase difference between reference and object wave, which varies
randomly from point to point. This speckle interferogram is recorded and elec-
tronically stored.

The set-up in Fig. 8.1 is sensitive to out-of-plane deformations, i.e. deformations
perpendicular to the object surface. A displacement of dz corresponds to a phase
shift of

Du ¼ 4p
k
dz ð8:2Þ

After deformation a second speckle pattern is recorded:

IB x; yð Þ ¼ aR x; yð Þ exp iuRð Þ þ aO x; yð Þ exp iuO þ Duð Þj j2
¼ a2R þ a2O þ 2aRaO cos uO � uR þ Duð Þ ð8:3Þ

These two speckle pattern are now subtracted:

DI ¼ IA � IBj j ¼ 2aRaO cos uO � uRð Þ � cos uO � uR þ Duð Þð Þj j

¼ 2aRaO sin u0 � uR þ
Du
2

� �
sin

Du
2

����
���� ð8:4Þ

The intensity of this difference image is minimal at those positions, where
Du ¼ 0; 2p; . . .. The intensity reaches its maximum at those positions, where

Fig. 8.1 Electronic speckle pattern interferometer
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Du ¼ p; 3p; . . .. The result is a pattern of dark and bright fringes, similar to a
holographic interferogram. However, when compared to HI three-dimensional
information in the correlation process is lost. Also the presence of speckle gives the
fringes a more granular appearance A typical ESPI subtraction pattern is shown in
Fig. 8.2.

As already mentioned, the set-up of Fig. 8.1 is only sensitive to out-of plane
motion. In-plane displacements can be measured using the arrangement of Fig. 8.3.
Two plane waves illuminate the object symmetrically at the angles �h to the z-axis.
The object is imaged by a camera. Again the speckle size is adapted to the target
resolution by the aperture of the imaging system. The phase change due to an in-
plane displacement can be derived by geometrical considerations, similar to the HI
displacement calculations. The phase change of the upper beam is

Fig. 8.2 ESPI image

TV-camera

θ

θ

object

z

x

b

s1

s2

Fig. 8.3 In-plane sensitive speckle interferometer
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Du1 ¼
2p
k
~d ~b�~s1
� �

ð8:5Þ

with displacement vector~d. The unit vectors~b,~s1 and~s2 are defined in Fig. 8.3. The
corresponding phase shift of the lower beam is

Du2 ¼
2p
k
~d ~b�~s2
� �

ð8:6Þ

The total phase shift is

Du ¼ Du1 � Du1 ¼
2p
k
~d ~s2 �~s1ð Þ ð8:7Þ

The vector ~s2 �~s1ð Þ is parallel to the x-axis, its length is 2 sin h. The result for
the total phase shift as measured by the camera is therefore:

Du ¼ 4p
k
dx sin h ð8:8Þ

By using non-symmetrical illumination, the method also becomes sensitive to
out-of-plane displacements.

As for HI, the phase cannot be determined from a single speckle pattern. The
interference phase has to be recovered by, phase shifting methods [35, 223, 224].
Phase shifting ESPI requires recording at least three speckle interferograms with
mutual phase shifts in each state. Any of the various phase shifting methods can be
applied. Here an algorithm with 4 recordings and an unknown, but constant phase
shift angle α, is used. The equations representing the initial state are:

IA;1 ¼ a2R þ a2O þ 2aRaO cos u0 � uRð Þ
IA;2 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ að Þ
IA;3 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ 2að Þ
IA;4 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ 3að Þ

ð8:9Þ

The dependence of the intensities and amplitudes from the spatial coordinates (x,
y) has been omitted. This equation system has following solution:

uO � uR ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA;1 þ IA;2 � IA;3 � IA;4

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3IA;2 � 3IA;3 � IA;1 þ IA;4

p
IA;2 þ IA;3 � IA;1 � IA;4

ð8:10Þ

For the second state 4 phase shifted interferograms are also recorded:
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IB;1 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ Duð Þ
IB;2 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ Duþ að Þ
IB;3 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ Duþ 2að Þ
IB;4 ¼ a2R þ a2O þ 2aRaO cos u0 � uR þ Duþ 3að Þ

ð8:11Þ

The solution is:

uO � uR þ Du ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IB;1 þ IB;2 � IB;3 � IB;4

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3IB;2 � 3IB;3 � IB;1 þ IB;4

p
IB;2 þ IB;3 � IB;1 � Ib;4

ð8:12Þ

The interference phase Du is now calculated from Eqs. (8.10) and (8.12) by
subtraction.

Phase shifting speckle interferometry is sometimes also called Electro-Optic
Holography (EOH).

8.2 Digital Shearography

ESPI as well as conventional and Digital HI are highly sensitive to optical path
changes. Displacement measurements up to a resolution of λ/100 are possible. On
the other hand this high sensitivity is also a drawback for applications in field
environments, where vibration isolation may not be available. Unwanted optical
path length variations due to vibrations disturb the recording process.

As we have already seen in Chap. 7, Shearography [15, 89, 90, 170] is an
interferometric method, which brings the rays scattered from one point of the object
P x; yð Þ into interference with those from a neighbouring point P xþ Dx; yð Þ. The
distance between both points is Dx. The shearing can be realized by mounting a
glass wedge, in one half of the imaging system, Fig. 8.4. The object is imaged via
both halves of the aperture (with and without wedge). Therefore two laterally
sheared images overlap at the recording device, see Fig. 8.5.

Lens

Wedge

P(x,y)

P(x+ x,y)Δ

b

s

Fig. 8.4 Speckle shearing
interferometer
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The intensity on the target is:

IA x; yð Þ ¼ a1 x; yð Þ exp iu x; yð Þð Þ þ a2 x; yð Þ exp iu xþ Dx; yð Þð Þj j2
¼ a21 þ a22 þ 2a1a2 cos u x; yð Þ � u xþ Dx; yð Þð Þ

ð8:13Þ

where a1 exp iu x; yð Þð Þ and a2 exp iu xþ Dx; yð Þð Þ are the complex amplitudes of the
interfering waves in the image plane. As in ESPI the phase difference
u xþ Dx; yð Þ � u x; yð Þð Þ varies randomly from point to point. This speckle inter-
ferogram is recorded and electronically stored. Another interferogram is recorded
for the second state B:

IB x; yð Þ ¼ a1 x; yð Þ exp i u x; yð Þ þ Du x; yð Þð Þ½ �
þ a2 x; yð Þ exp i u xþ Dx; yð Þ þ Du xþ Dx; yð Þð Þ½ �

����
����
2

¼ a21 þ a22 þ 2a1a2 cos u x; yð Þ � u xþ Dx; yð Þ þ Du x; yð Þ � Du xþ Dx; yð Þ½ �
ð8:14Þ

Pointwise subtraction gives:

DI ¼ IA � IBj j

¼ 2a1a2 cos u x; yð Þ � u xþ Dx; yð Þð Þ � cos
u x; yð Þ � u xþ Dx; yð Þ
þDu x; yð Þ � Du xþ Dx; yð Þ

� 	
 �����
����

¼ 2a1a2
sin u x; yð Þ � u xþ Dx; yð Þ þ Du x;yð Þ�Du xþDx;yð Þ

2

n o
� sin

Du x;yð Þ�Du xþDx;yð Þ
2

������
������

ð8:15Þ

This correlation pattern is known as a shearogram, see typical example in
Fig. 8.6.

Fig. 8.5 Image from a
shearing camera
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The phase shift due to deformation in the argument of Eq. (8.15) is calculated as
follows (see also the definition of unit vectors ~b and~s in Fig. 8.4):

Du x; yð Þ � Du xþ Dx; yð Þ ¼ 2p
k

~d x; yð Þ ~b�~s
� �

�~d xþ Dx; yð Þ ~b�~s
� �n o

¼ 2p
k

~d x; yð Þ �~d xþ Dx; yð Þ
Dx

~b�~s
� �( )

Dx

� 2p
k
o~d x; yð Þ

ox
~b�~s
� �

Dx

ð8:16Þ

A shearing interferometer is therefore sensitive to the derivative of the dis-
placement into the shear direction, in contrast to ESPI which is sensitive to the
displacement. Shearography is relatively insensitive for rigid body motions,
because o~d x; yð Þ=ox vanishes if the object is moved as a whole [219, 220]. A
second property which makes a shearing interferometer less sensitive to vibrations
is the self-reference principle: Optical path changes due to vibrations influence both
partial beams, which means they compensate each other to a certain degree.
Shearography is therefore suited for rough environments with low vibration
isolation.

The measurement sensitivity of a speckle shearing interferometer can be adjusted
by varying the magnitude of the shear Dx. This parameter is determined by the
wedge angle in the interferometer set-up of Fig. 8.4. Other shearing interferometer
geometries are based on a Michelson interferometer, where the mirror tilt deter-
mines the shearing, Fig. 8.7.

Phase shifting techniques can also be applied in shearography. As with ESPI a
set of phased shifted images is recorded in each state from which the phase
according to Eq. (8.16) is calculated, see example in Fig. 8.8. An aircraft fuselage
damaged in a hailstorm is investigated by shearography. The figure shows a filtered
mod 2π phase image.

Fig. 8.6 Shearogram
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Fig. 8.7 Shearography set-up based on a Michelson interferometer

Fig. 8.8 Shearography phase
image. Courtesy of M. Kalms
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8.3 Digital Speckle Photography

Digital Speckle Photography (DSP) is the electronic version of Speckle Photog-
raphy [29, 86, 134, 215, 230]. The method is used to measure in-plane displacement
and strain. In classical Speckle Photography, two speckle patterns of the same
surface are recorded on photographic film, e.g. with the set-up of Fig. 2.11. The
object suffers an in-plane deformation between the exposures. This in-plane
deformation is made visible as fringe pattern by pointwise illumination of the
double exposed film with a collimated laser beam or alternatively using an optical
filtering set-up. In DSP the speckle patterns are recorded by a high resolution
electronic sensor camera, electronically stored and correlated numerically. DSP has
the potential to measure under dynamic testing conditions, because a single
recording at each load state is sufficient for the evaluation. Furthermore, the
requirements for vibration isolation are much lower than for interferometric
methods, because DSP works without reference wave. DSP is therefore an attractive
tool for measurements under workshop conditions.

The sample under investigation is coherently illuminated by means of an
expanded laser beam. A speckle pattern of the reference state and a speckle pattern
of the load state are recorded. The first step of the numerical evaluation procedure is
to divide the whole image of e.g. 2,024 × 2,024 pixels into “subimages”, Fig. 8.9.
The usual sizes of these subimages are 64 × 64 or 32 × 32 pixels. The calculation of
the local displacement vectors at each subimage is performed by a cross correlation
function

RII dx; dy
� 
 ¼ Z1

�1

Z1
�1

I�1 x; yð ÞI2 xþ dx; yþ dy
� 


dxdy ð8:17Þ

Fig. 8.9 Cross correlation of subimages (from [86])
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where I1 x; yð Þ and I2 x; yð Þ are the intensities in the reference and in the load speckle
pattern, respectively. The quantities dx and dy are the displacements of the subimage
in x- and y-direction. Intensities are always real i.e. the conjugate complex operation
can be neglected. A mathematically equivalent form of Eq. (8.17) is:

RII dx; dy
� 
 ¼ =�1 = I�1 x; yð Þ� �= I2 x; yð Þ½ �� � ð8:18Þ

The mean displacement vector of the evaluated subimage is given by the
location of the peak of the cross correlation function, Fig. 8.9. This numerical
evaluation corresponds to the classical technique, where double exposed speckle
photographs are locally illuminated by a collimated laser beam. The full in-plane
displacement map of the monitored area is available after evaluation of all
subimages.

The displacement field is calculated by this method in integer numbers of one
pixel. The accuracy is therefore only of the order of one pixel. This discrete
evaluation is sufficient for applications where only displacements fields are to be
measured. Strain analyses of experimental mechanics often require a higher mea-
surement accuracy, to enable the differences to be calculated. The normal strains are
e.g. given by

ex ¼ odx
ox

� Ddx
Dx

; ey ¼ ody
oy

� Ddy
Dy

ð8:19Þ

The accuracy of DSP can be improved using so called subpixel algorithms,
where the displacements are calculated on the basis of all floating point values in
the neighborhood of the pixel with the peak location. A simple subpixel algorithm
is given by

dx ¼
P

i dx;iGiP
i Gi

dy ¼
P

i dy;iGiP
i Gi

ð8:20Þ

where Gi is the floating point grey level of pixel number i. The structure of this
formula is equivalent to a “center of gravity” calculation. In practice only a few
pixels around the peak are necessary for subpixel evaluation.

8.4 Comparison of Conventional HI, ESPI and Digital HI

Conventional Holographic Interferometry using photographic or other recording
media, Electronic Speckle Pattern Interferometry and Digital Holographic Inter-
ferometry are all different methods to measure optical path changes. In this section
the differences as well as the common features of all three methods are analyzed.

The process flow diagram of conventional real-time HI is shown in Fig. 8.10.
The measurement process starts by recording a hologram of the object in its initial
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state. This is the most time-consuming and costly step of the entire process: The
exposure, development and repositioning of a photographic plate takes typically
some minutes. Other holographic recording media such as thermoplastic film or
photorefractive crystals can be developed much faster and automated (some sec-
onds for thermoplastic films, even instantaneously for photorefractive crystals).
However, the quality and reliability of thermoplastic films is not sufficient for HI
applications and the information stored in photorefractive crystals erases in the
optical reconstruction process. Once the hologram is successfully developed and
replaced at its initial position the process is simple: the superposition of the wave
field reconstructed by the hologram with the actual wave field generates a holo-
graphic interferogram. This fringe pattern is recorded by an electronic camera and
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digitally stored. In order to determine the interference phase unambiguously, it is
necessary to generate at least three interferograms (for the same object state) with
mutual phase shifts. The interference phase is calculated from these phase shifted
interferograms by the algorithm briefly discussed in Sect. 2.7.5. The entire process
requires altogether the generation of one hologram plus recording of at least three
interferograms in order to determine the interference phase. The technical effort is
demanding: a holographic set-up with interferometer and laser, holographic
recording media (photographic plates), laboratory equipment for development of
holograms, a phase shifting unit and an electronic camera with storage device (PC)
for interferogram recording are all necessary. On the other hand the quality of
interferograms generated by this method is excellent. Due to the size and resolution
of holograms recorded on photographic plates the observer can choose the obser-
vation direction freely, i.e. it is possible to observe the object from a variety of
different positions and with different depth of focus. This is often very helpful for
NDT applications and, if the sensitivity vector has to be varied, in quantitative
deformation measurement.

ESPI was born from the desire to replace photographic hologram recording and
processing by recording with electronic cameras. At the beginning of the 1970s,
when ESPI was invented, only analogue cameras with very low resolution (line-
pairs per millimetre) were available. Consequently, a direct conversion of holo-
graphic principles to electronic recording devices was not possible. The basic idea
of ESPI therefore was to record holograms of focussed images. The spatial fre-
quencies of these image plane holograms could be adapted to the resolution of the
cameras due to the in-line configuration. The optical reconstruction was replaced by
an image correlation (subtraction). The ESPI correlation patterns have some simi-
larities to the fringes of HI, but have a “speckly” appearance. Another difference in
comparison to conventional HI is the loss of the 3D-effect, because only image
plane holograms are recorded from one observation direction. Interference phase
measurement with ESPI requires application of phase shifting methods; see flow
process in Fig. 8.11. In each state at least three speckle interferograms with mutual
phase shifts have to be recorded. The total number of electronic recordings to
determine the interference phase is therefore at least six. Speckle interferometers are
commercially available and are nearly as simple to use as ordinary cameras.

The idea of Digital Holographic Interferometry was to record “real” holograms
(as opposed to focussed image holograms) by an electronic device and to transfer
the optical reconstruction process into the computer. The method is characterized
by following features:

• No wet-chemical or other processing of holograms (as for ESPI)
• Different object planes can be reconstructed by numerical methods (numerical

focussing) all from one digital hologram
• Lensless imaging is possible, i.e. no aberrations are introduced by imaging

devices
• Direct phase reconstruction, i.e. phase differences can be calculated directly

from holograms, without interferogram generation and processing. This
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interesting feature is only possible in DHI, conventional HI as well as ESPI need
phase shifted interferograms (or another additional information) for phase
determination. The total number of recordings to get the interference phase is
therefore only two (one per state), see process flow in Fig. 8.12. Even transient
processes, where there is no time for recording of phase shifted interferograms,
can be investigated with DHI.

DHI and phase shifting ESPI are competing techniques. ESPI allows real-time
operation, i.e. the recording speed is only limited by the frame rate of the recording
device (CCD). In addition the user directly observes an image of the object under
investigation, whereas in DHI this image is only available after running the
reconstruction algorithm. This what you see is what you get feature is helpful for
adjustment and control purposes. On the other hand the time for running DHI
reconstruction algorithms has been reduced drastically in recent years due to the
progress in computer technology. Digital holograms with 2,000 × 2,000 pixels can
nowadays be reconstructed nearly in real-time.

Fig. 8.11 Process flow of
phase shifting ESPI

8.4 Comparison of Conventional HI, ESPI and Digital HI 197



Another current disadvantage of DHI is that the spatial frequency spectrum has
to be adapted carefully to the resolution (pixel size) of the sensor. However, the
performance chararctersitics and operational parameters of electronic sensors like
CCD and CMOS are rapidly improving, with pixel sizes for CMOS currently
around 2 μm, which in turn allows recording of larger object cone angles.
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Appendix A
The Fourier Transform

A.1 Definitions

The one-dimensional Fourier transform of the function f(x) is defined as

= f xð Þf g ¼ F uð Þ ¼
Z1
�1

f xð Þ exp �i2pux½ �dx ðA:1Þ

The inverse one-dimensional Fourier transformation is defined as

=�1 F uð Þf g ¼ f xð Þ ¼
Z1
�1

F uð Þ exp i2pux½ �du ðA:2Þ

The functions f(x) and F(u) are called Fourier transform pair.
The two-dimensional Fourier transform of the function f(x,y) is defined as

= f x; yð Þf g ¼ F u; vð Þ ¼
Z1
�1

Z1
�1

f x; yð Þ exp �i2p uxþ vyð Þ½ �dxdy ðA:3Þ

The corresponding inverse two-dimensional Fourier transformation is defined
as

=�1 F u; vð Þf g ¼ f x; yð Þ ¼
Z1
�1

Z1
�1

F u; vð Þ exp i2p uxþ vyð Þ½ �dudv ðA:4Þ

The Fourier transformation is a powerful mathematical tool to describe and
analyse periodic structures. If x is the time coordinate of a signal (unit: s), then u is
the corresponding frequency (unit: 1=s � Hz). In the two-dimensional case (x,y) are
often spatial coordinates (units: m), while (u,v) are the corresponding spatial
frequencies (units: 1=m).
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A.2 Properties

In the following some useful theorems relating to Fourier transforms are
summarized. These formulas are given for the two-dimensional case.

1. Linearity theorem

= af x; yð Þ þ bg x; yð Þf g ¼ aF u; vð Þ þ bG u; vð Þ ðA:5Þ

where a and b are constants, F u; vð Þ ¼ = f x; yð Þð Þ and G u; vð Þ ¼ = g x; yð Þð Þ.
2. Similarity theorem

= f ax; byð Þf g ¼ 1
abj jF

u
a
;
v
b

� �
ðA:6Þ

3. Shift theorem

= f x� a; y� bð Þf g ¼ F u; vð Þ exp �i2p uaþ vbð Þ½ � ðA:7Þ
4. Rayleigh's (Parseval's) theorem

Z1
�1

Z1
�1

f x; yð Þj j2dxdy ¼
Z1
�1

Z1
�1

F u; vð Þj j2dudv ðA:8Þ

5. Convolution theorem

The two-dimensional convolution of two functions f(x,y) and g(x,y) is defined as

f � gð Þ x; yð Þ ¼
Z1
�1

Z1
�1

f x0; y0ð Þg x� x0; y� y0ð Þdx0dy0 ðA:9Þ

where⊗ denotes the convolution operation. The convolution theorem states that the
Fourier transform of the convolution of two functions is equal to the product of the
Fourier transforms of the individual functions:

= f x; yð Þ � g x; yð Þf g ¼ F u; vð ÞG u; vð Þ ðA:10Þ

6. Autocorrelation theorem

=
Z1
�1

Z1
�1

f � x0; y0ð Þf xþ x0; yþ y0ð Þdx0dy0
8<
:

9=
; ¼ F u; vð Þj j2 ðA:11Þ
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7. Fourier integral theorem

==�1 f x; yð Þf g ¼ =�1= f x; yð Þf g ¼ f x; yð Þ ðA:12Þ
8. Differentiation

Differentiation in the spatial domain corresponds to a multiplication with a linear
factor in the spatial frequency domain:

= o
ox

� �m o
oy

� �n

f x; yð Þ
� �

¼ i2puð Þm i2pvð ÞnF u; vð Þ ðA:13Þ

A.3 The Discrete Fourier Transform

For numerical computations the function to be transformed is given in a discrete
form, i.e. f(x) in Eq. (A.1) has to be replaced by the finite series fk , with integer
numbers k ¼ 0; 1; . . .; N � 1. The continuous variable x is now described as
integer multiple of a sampling interval Dx:

x ¼ kDx ðA:14Þ
The frequency variable u is converted into a discrete variable, too:

u ¼ mDu ðA:15Þ
The discrete representation of Eq. (A.1) is then given by:

Fm ¼ Dx
XN�1

k¼0

fk exp �i2pkmDxDu½ � form ¼ 0; 1; . . .; N � 1 ðA:16Þ

The maximum frequency is determined by the sampling interval in the spatial
domain:

umax ¼ NDu ¼ 1
Dx

ðA:17Þ

The following expression

Fm ¼ 1
N

XN�1

k¼0

fk exp �i2p
km
N

� 	
ðA:18Þ

is therefore defined as one-dimensional discrete Fourier transform (DFT). The
inverse transformation is given by

fk ¼
XN�1

m¼0

Fm exp i2p
km
N

� 	
ðA:19Þ
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Similar considerations lead to the discrete two-dimensional Fourier transform
pair:

Fmn ¼ 1
N2

XN�1

k¼0

XN�1

l¼0

fkl exp �i2p
kmþ ln

N

� �� 	
ðA:20Þ

fkl ¼
XN�1

m¼0

XN�1

n¼0

Fmn exp i2p
kmþ ln

N

� �� 	
ðA:21Þ

for m ¼ 0; 1; . . .N � 1 and n ¼ 0; 1; . . .N � 1
Here a quadratic field of sampling points is used, i.e. the number of points in

each row is equal to that in each column.
The computation time for a discrete Fourier transform is mainly determined by

the number of complex multiplications. A two-dimensional DFT can be factorised
into two one-dimensional DFT’s:

Fmn ¼ 1
N2

XN�1

k¼0

XN�1

l¼0

fkl exp �i2p
nl
N

� �" #
exp �i2p

km
N

� �
ðA:22Þ

The one-dimensional DFT can be programmed most effectively using the so
called fast fourier transform (FFT) algorithms, invented in the 70th of the last century
by Cooley and Tookey. These algorithms make use of redundancies and reduce the
number of multiplications for a one-dimensional DFT from N2 to 2N log2 N. The
FFT algorithms are not described here, it is referred to the literature [18].
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Appendix B
Phase Transformation of a Spherical Lens

B.1 Lens Transmission Function

The effect of an optical component with refractive index n and thickness d on the
complex amplitude of a wave is described by a transmission function τ:

s ¼ sj j exp �i
2p
k

n� 1ð Þd
� 	

ðB:1Þ

This function is calculated in the following for a thin biconvex lens. Such lens
consists of two spherical surfaces, see Fig. B.1. The radius of curvature of the left
half lens is R1, while that of the right half lens is designated R2. Following sign
convention is applied: As rays travel from left to right, each convex surface has a
positive radius of curvature, while each concave surface has a negative radius of
curvature. Due to this convention R2 has a negative value. Losses due to reflection
at the surfaces and due to absorption inside the lens are neglected; i.e. sj j ¼ 1. The
refractive index is constant for the entire lens.

The lens thickness is a function of the spatial coordinates x and y:

d x; yð Þ ¼ d1 x; yð Þ þ d2 x; yð Þ
¼ d01 � f1 þ d02 � f2ð Þ ðB:2Þ

According to Fig. B.1 it can be written:

R2
1 ¼ r2 þ R1 � f1ð Þ2
¼ x2 þ y2 þ R2

1 � 2R1f1 þ f21
ðB:3Þ

and

R2
2 ¼ r2 þ �R2 � f2ð Þ2
¼ x2 þ y2 þ R2

2 þ 2R2f2 þ f22
ðB:4Þ
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Neglecting the quadratic terms of f1=2 leads to:

f1 ¼
x2 þ y2

2R1
ðB:5Þ

f2 ¼ � x2 þ y2

2R2
ðB:6Þ

This level of approximation is consistent with the parabolic approximation used
in the Fresnel transformation. The thickness is now

d x; yð Þ ¼ d0 � x2 þ y2

2R1
þ x2 þ y2

2R2
ðB:7Þ

d01 d02

d0

ζ1 ζ 2

d1 d2

d

r r
R1-R2

x

y

Fig. B.1 Biconvex lens, top view and cross-sectional view
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With the lens makers equation

1
f
¼ n� 1ð Þ 1

R1
� 1
R2

� 	
ðB:8Þ

of geometrical optics following lens transmission function is derived:

L x; yð Þ ¼ exp i
p
kf

x2 þ y2

 �� 	

ðB:9Þ

The constant factor exp �i2p=k n� 1ð Þd0ð Þ, which only effects the overall phase,
has been neglected.

B.2 Correction of Aberrations

In the following the complex amplitude of an object, which is imaged by a lens is
calculated. The object is lying in the (ξ, η) coordinate system, the lens is located in
the (x,y) system and the image arises in the n0; g0ð Þ system, see Fig. B.2. The object
is described by the complex amplitude EO n; gð Þ.

The complex amplitude in front of the lens is given by

E0
O x; yð Þ ¼ exp �i

p
kd

x2 þ y2

 �h i Z1

�1

Z1
�1

EO n; gð Þ exp �i
p
kd

n2 þ g2

 �h i

� exp i
2p
kd

xnþ ygð Þ
� 	

dndg ðB:10Þ
where the Fresnel approximation is used. The complex amplitude in the image
plane in then given by

E00
O n0; g0ð Þ ¼ exp �i

p
kd

n02 þ g02

 �h i Z1

�1

Z1
�1

E0
O x; yð ÞL x; yð Þ exp �i

p
kd

x2 þ y2

 �h i

� exp i
2p
kd

xn0 þ yg0ð Þ
� 	

dxdy

¼ exp �i
p
kd

n02 þ g02

 �h i Z1

�1

Z1
�1

Z1
�1

Z1
�1

EO n; gð Þ exp �i
p
kd

x2 þ y2

 �h i

� exp �i
p
kd

n2 þ g2

 �h i

exp i
2p
kd

xnþ ygð Þ
� 	

exp i
2p
kd

x2 þ y2

 �� 	

� exp �i
p
kd

x2 þ y2

 �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� 	

dndgdxdy

ðB:11Þ
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A magnification of 1 and a focal distance of f ¼ d=2 is used for the lens
transmission function L(x,y).

The image coordinates can be expressed in terms of the object coordinates:

n0 ¼ �n and g0 ¼ �g ðB:12Þ
The minus signs result, because according to the laws of geometrical optics the

image is upside down.
The complex amplitude of the image is now

E00
O n0; g0ð Þ ¼ exp �i

2p
kd

n02 þ g02

 �� 	

EO �n0;�g0ð Þ

¼ exp �i
p
kf

n02 þ g02

 �� 	

EO �n0;�g0ð Þ ðB:13Þ

The wavefield in the image plane has to be multiplied therefore by a factor

P n0; g0ð Þ ¼ exp i
p
kf

n02 þ g02

 �� 	

ðB:14Þ

in order to generate the correct phase distribution.
This correction factor depends on the wavelength and on the coordinates of the

image plane. It can be neglected, if only the intensity of a wavefield has to be
calculated after reconstruction ðI / P�P ¼ 1Þ. This is also valid if the phase
difference of two wavefields, which are recorded with the same wavelength, is
computed:

Du ¼ u1 � u2 ¼ ip=kf n02 þ g02

 �þ u0

1 � ip=kf n02 þ g02

 �þ u0

2

� 

¼ u0

1 � u0
2

ðB:15Þ

This is usually the case in DHI for applications in deformation analysis.
However, the correction factor has to be considered, if the phase difference of two
wavefields, which are recorded with different wavelengths, is computed. This is the
case in multi-wavelength DHI for shape measurement.

y
x ξ'

η'

z

dd

ξ
η

Fig. B.2 Image formation
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Appendix C
Simple Reconstruction Routines

Two simple Matlab© reconstruction routines are given here. They may easily be
converted into other programming languages. In Fig. C.1 the Fresnel transform is
shown, reconstruction according to the convolution approach is depicted in
Fig. C.2.
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Fig. C.1 Reconstruction routine, Fresnel Transformation

208 Appendix C: Simple Reconstruction Routines



Fig. C.2 Reconstruction routine, convolution approach

Appendix C: Simple Reconstruction Routines 209



References

1. Abramson N (1983) Light-in-flight recording: high speed holographic motion pictures of
ultrafast phenomena. Appl Opt 22:215–232

2. Abramson N (1984) Light-in-flight recording 2: compensation for the limited speed of the
light used for observation. Appl Opt 23:1481–1492

3. Abramson N (1984) Light-in-flight recording 3: compensation for optical relativistic effects.
Appl Opt 23:4007–4014

4. Abramson N (1985) Light-in-flight recording 4: visualizing optical relativistic phenomena.
Appl Opt 24:3323–3329

5. Adams M, Kreis T, Jüptner W (1997) Particle size and position measurement with digital
holography. Proc SPIE 3098:234–240

6. Adams M, Kreis T, Jüptner W (1999) Particle measurement with digital holography. In: Proc
SPIE vol 3823 38-43

7. Agour M, Falldorf C, Bergmann R (2013) Investigation of composite materials using SLM-
based phase retrieval. Opt Lett 38:2203–2205

8. Allen LJ, Oxley MP (2001) Phase retrieval from series of images obtained by defocus
variation. Opt Comm 199:65–75

9. Almoro PF, Maallo A, Hanson SG (2009) Fast convergent algorithm for speckle-based phase
retrieval and a design for dynamic wavefront sensing. Appl Opt 48:1485–1493

10. Arroyo K, Hinsch (2008) Recent developments of PIV towards 3D measurements. In:
Schröder A, Willert CE (eds.) Particle image velocimetry. Springer, Berlin, pp. 127–154

11. Baranova NB, Mamaev AV, Pilipetsky NF, Shkunov VV, Zel’dovich BY (1983) Wave-front
dislocations: topological limitations for adaptive systems with phase conjugation”. J Opt Soc
Am 73:525–528

12. Bauschke HH, Combettes PL, Luke DR (2002) Phase retrieval, error reduction algorithm,
and Fienup variants: a view from convex optimization. J Opt Soc Am A 19:1334–1345

13. Bauschke HH, Combettes PL, Luke DR (2003) Hybrid projection-reflection method for
phase retrieval. J Opt Soc Am A 20:1025–1034

14. Le Bigot E-O, Wild WJ, Kibblewhite EJ (1998) Reconstruction of discontinuous light-phase
functions. Opt Lett 23:10–12

15. Bisle W (1998) Optische prüfung an luftfahrtkomponenten: weiterentwicklung des
scherografie-prüfverfahrens für nicht-kooperative oberflächen von flugzeugstrukturen. Proc
Deutsche Gesellschaft für Luft- und Raumfahrt, annual meeting, Bremen, Germany

16. Born M, Wolf E (1980) Principles of Optics. 6 edn. Oxford, Pergamon
17. Breuckmann B, Thieme W (1985) Computer-aided analysis of holographic interferograms

using the phase-shift method. Appl Opt 24:2145–2149
18. Brigham EO (1974) The fast fourier transform. Pretince-Hall, New York

© Springer-Verlag Berlin Heidelberg 2015
U. Schnars et al., Digital Holography and Wavefront Sensing,
DOI 10.1007/978-3-662-44693-5

211



19. van Brug H (1997) Zernike polynomials as a basis for wave-front fitting in lateral shearing
interferometry. Appl. Opt. 36:2788–2790

20. Bryngdahl O, Wyrowski F (1990) Digital Holography—computer generated holograms.
Progress in Optics 28:1–86

21. Burns NJ, Watson J (2011) A study of focus metrics and their application to automated
focusing of inline transmission holograms. Jnl Imaging Science 59:90–99

22. Burns NM (2011) Automated analysis system for the study of digital in-line holograms of
aquatic particles, PhD Thesis, Univ of Aberdeen

23. Butters JN, Leendertz JA (1971) Holographic and Videotechniques applied to engineering
measurements. J Meas Control 4:349–354

24. Carder K (1979) Holographic microvelocimeter for use in studying ocean particle dynamics.
Opt Eng 18:524–525

25. Carlsson T, Nilsson B, Gustafsson J (2001) System for acquisition of three-dimensional
shape and movement using digital Light-in-Flight holography. Opt Eng 40(01):67–75

26. CCD Primer (2002) product information. Kodak, New York
27. Champagne EB (1967) Non-paraxial imaging, magnification and aberration properties in

holography. J Op Soc Am 57:51–55
28. Champeney DC (1973) Fourier transforms and their physical interpretation. Academic Press,

London
29. Chen DJ, Chiang FP, Tan YS, Don HS (1993) Digital speckle displacement measurement

using a complex spectrum method. Appl Opt 32(11):1839–1848
30. Claus D, Watson J, Rodenburg J (2011) Analysis and interpretation of the Seidel aberration

coefficients in digital holography. App Opt 50:H220–H229
31. Coppola G, De Nicola S, Ferraro P, Finizio A, Grilli S, Iodice M, Magro C, Pierattini G

(2003) Evaluation of residual stress in MEMS structures by means of digital holography. In:
Proc. SPIE vol 4933, pp 226-31

32. Colomb T, Kühn J, Charriére F, Depeursinge C, Marquet P, Aspert N (2006) Optics Express
14:4300–4306

33. Coppola G, Ferraro P, Iodice M, De Nicola S, Finizio A, Grilli S (2004) A digital
holographic microscope for complete characterization of microelectromechanical systems.
Meas Sci Technol 15:529–539

34. Coquoz O, Conde R, Taleblou F, Depeursinge C (1995) Performances of endoscopic
holography with a multicore optical fiber. Appl Opt 34(31):7186–7193

35. Creath K (1985) Phase shifting speckle-interferometry. Appl Opt 24(18):3053–3058
36. Creath K (1994) Phase-shifting holographic interferometry. Holographic Interferometry,

Springer Series in Optical Sciences 68:109–150
37. Cuche E, Bevilacqua F, Depeursinge C (1999) Digital holography for quantitative phase-

contrast imaging. Optics Letters 24(5):291–293
38. Cuche E, Marquet P, Depeursinge C (1999) Simultaneous amplitude-contrast and

quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis
holograms. Appl Opt 38(34):6994–7001

39. Cuche E, Marquet P, Depeursinge C (2000) Spatial filtering for zero-order and twin-image
elimination in digital off-axis holography. Appl Opt 39(23):4070–4075

40. Cuche E, Marquet P, Depeursinge C (2000) Aperture apodization using cubic spline
interpolation: application in digital holographic microscopy. Opt Commun 182:59–69

41. Demetrakopoulos TH, Mittra R (1974) Digital and optical reconstruction of images from
suboptical diffraction patterns. Appl Opt 13(3):665–670

42. Demoli N, Mestrovic J, Sovic I (2003) Subtraction digital holography. Appl Opt 42
(5):798–804

43. Depeursinge C, Marquet P, Pavillon P (2011) Applications of digital holographic microscopy
in biomedicine, in Handbook of Biomedical Optics, DA Boas, P Pitros, N Ramanujam (eds),
Taylor and Francis, 29: 617-647

212 References



44. Dong H, Khong C, Player MA, Solan M, Watson J (2003) Algorithms and applications for
electronically-recorded holography. Proc SPIE 5477:354–365

45. Dong BZ, Zhang Y, Gu BY, Yang GZ (1997) Numerical investigation of phase retrieval in a
fractional Fourier transform. J. Opt. Soc. Am. A 14:2709–2714

46. Doval AF (2000) A systematic approach to TV holography. Meas Sci Technol 11:R1–R36
47. Dubois F, Joannes L, Legros JC (1999) Improved three-dimensional imaging with a digital

holography microscope with a source of partial spatial coherence. Appl Opt 38
(34):7085–7094

48. Dubois F, Minetti C, Monnom O, Yourassowsky C, Legros JC, Kischel P (2002) Pattern
recognition with a digital holographic microscope working in partially coherent illumination.
Appl Opt 41(20):4108–4119

49. Dubois F, Schockaert C, Callens N Yourassowsky C (2006) Focus plane detection criteria in
digital holography microscopy by amplitude analysis. Opt Express 14: 5895–5908

50. Elser V (2003) Phase retrieval by iterated projections. J. Opt. Soc. Am A 20:40–55
51. Elster C, Weingärtner I (1999) Solution to the Shearing Problem. Appl. Opt. 38:5024–5031
52. Falldorf C, Huferath-von Luepke S, von Kopylow C, Bergmann R (2012) Reduction of

speckle noise in multiwavelength contouring. Appl. Opt. 51(34):8211–8215
53. Falldorf C, Agour M, von Kopylow C, Bergmann R (2010) Phase retrieval by means of a

spatial light modulator in the Fourier domain of an imaging system. Appl. Opt.
49:1826–1830

54. Falldorf C, Heimbach Y, von Kopylow C, Jüptner W (2007) Efficient reconstruction of
spatially limited phase distributions from their sheared representation. Appl. Opt.
46:5038–5043

55. Falldorf C, Osten W, von Kopylow C, Jüptner W (2009) Shearing interferometer based on
the birefringent properties of a spatial light modulator. Opt. Lett. 34:2727–2729

56. Falldorf C, Simic A, Ehret G, Schulz M, von Kopylow C, Bergmann R et al (2014) Precise
optical metrology using computational shear interferometry and an LCD monitor as light
source. Fringe 2013, 7th International Workshop on Advanced Opt Imaging Metrol 729–734

57. Falldorf C, von Kopylow C, Bergmann R (2013) Wave field sensing by means of
computational shear interferometry. J. Opt. Soc. Am. A 30:1905–1912

58. Fienup J, Wackerman C (1986) Phase-retrieval stagnation problems and solutions. J Opt Soc
Am A 3:1897–1907

59. Fienup J (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769
60. Fienup J (1993) Phase-retrieval algorithms for a complicated optical system. Appl Opt

32:1737–1746
61. Fienup J (1978) Reconstruction of an object from the modulus of its Fourier transform. Opt.

Lett. 3:27–29
62. Frank J, Altmeyer S, Wernicke G (2010) Non-interferometric, non-iterative phase retrieval

by Green’s functions. J Opt Soc Am A 70:2244–2251
63. Frauel Y, Javidi B (2001) Neural network for three-dimensional object recognition based on

digital holography. Optics Letters 26(19):1478–1480
64. Frauel Y, Tajahuerce E, Castro MA, Javidi B (2001) Distortion- tolerant three-dimensional

object recognition with digital holography. Appl Opt 40(23):3887
65. Freischlad KR, Koliopoulos CL (1986) Modal estimation of a wave front from difference

measurements using the discrete Fourier transform. J Opt Soc Am A 3:1852–1861
66. Fried DL (2001) Adaptive optics wave function reconstruction and phase unwrapping when

branch points are present. Opt Commun 200:43–72
67. Füzessy Z, Gyimesi F (1984) Difference holographic interferometry: displacement

measurement. Opt Eng 23(6):780–783
68. Gabor D (1948) A new microscopic principle. Nature 161:777–778
69. Gabor D (1949) Microscopy by reconstructed wavefronts. Proc Roy Soc 197:454–487
70. Gabor D (1951) Microscopy by reconstructed wavefronts: 2. Proc Phys Soc 64:449–469

References 213



71. Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of phase from
image and diffraction plane pictures. Optik (Jena) 35:237–246

72. Goodman JW (1975) statistical properties of laser speckle patters. In: Dainty JC (ed) Laser
Speckle and Related Phenomena, Topics in Appl Physics, vol 9. Springer, Berlin, pp 9–75

73. Goodman JW (1996) Introduction to fourier optics 2nd edn. McGraw-Hill, New York
74. Goodman JW, Lawrence RW (1967) Digital image formation from electronically detected

holograms. Appl Phys Lett 11:77–79
75. Grilli S, Ferraro P, De Nicola S, Finizio A, Pierattini G, Meucci R (2001) Whole optical

wavefield reconstruction by digital holography. Optics Express 9(6):294–302
76. Grunwald R, Huferath S, Bock M, Neumann U, Langer S (2007) Angular tolerance of Shack-

Hartmann wavefront sensors with microaxicons. Opt. Lett. 32:1533–1535
77. Gureyev T, Nugent KA (1996) Phase retrieval with the transport-of-intensity equation. II.

Orthogonal series solution for nonuniform illumination. J. Opt. Soc. Am. A 13:1670–1682
78. Haddad W, Cullen D, Solem J, Longworth J, McPherson A, Boyer K, Rhodes K (1992)

Fourier-transform holographic microscope. Appl Opt 31(24):4973–4978
79. Harriharan P (1984) Optical Holography. Cambridge University Press, Cambridge
80. Hartmann J (1900) Bemerkungen über den Bau und die Justierung von Spektrographen.

Zeitschrift für Instrumentenkunde 20: 47ff
81. Heath JP (2005) Dictionary of microscopy Wiley, UK
82. Helmers H, Bischoff M, Ehlkes L (2001) ESPI-system with active in-line digital phase

stabilization. In: Jüptner W, Osten W (eds) Proc 4th international workshop on automatic
processing of fringe patterns. Elsevier, Heidelberg, pp 673–679

83. Hinsch K (2002) Holographic particle image velocimetry. Meas Sci Technol 13:R61–R72
84. Hinsch KD, Herrmann SV(eds) (2004) Special Issue on “Holographic particle image

velocimetry. in measurement science and technology 15(4): 673–685
85. Hobson PR, Watson J (2002) The principles and practice of holographic recording of

plankton. Jnl of Optics A Pure and Applied Optics 4:S34–S49
86. Holstein D, Hartmann HJ, Jüptner W (1998) Investigation of Laser Welds by Means of

Digital Speckle Photography. Proc SPIE 3478:294–301
87. Hongbin Y, Guangya Z, Siong CF, Feiwen L, Shouhua W (2008) A tunable Shack-Hartmann

wavefront sensor based on a liquid-filled microlens array. J. Micromech. Microeng.
18:105017

88. Hudgin RH (1977) Wave-front reconstruction for compensated imaging. J. Opt. Soc. Am. A
67:357–378

89. Hung YY (1996) Shearography for non-destructive evaluation of composite structures. Opt
Lasers Eng 24:161–182

90. Hung YY, Liang CY (1979) Image shearing camera for direct measurement of surface strain.
Appl Opt 18:1046–1051

91. Huntley JM, Saldner H (1993) Temporal phase-unwrapping algorithm for automated
interferogram analysis. Appl Opt 32(17):3047–3052

92. Inomato O, Yamaguchi I (2001) Measurements of Benard-Marangoni waves using phase-
shifting digital holography. Proc SPIE 4416:124–127

93. Ivanov VY, Sivokon VP, Vorontsov MA (1992) Phase retrieval from a set of intensity
measurements: theory and experiment. J. Opt. Soc. Am. A 9:1515–1524

94. Jacquot M, Sandoz P, Tribillon G (2001) High resolution digital holography. Opt Commun
190:87–94

95. Javidi B, Nomura T (2000) Securing information by use of digital holography. Optics Letters
25(1):28–30

96. Javidi B, Tajahuerce E (2000) Three-dimensional object recognition by use of digital
holography. Optics Letters 25(9):610–612

97. Jericho SK, Garcia-Sucerquia J, Xu W, Jericho MH, Kreuzer HJ (2006) Submersible digital
in-line holographic microscope. Rev Sci Instrum 77: 043706-1–043706-10

214 References



98. Jüptner W (1978) Automatisierte Auswertung holografischer Interferogramme mit dem
Zeilen-Scanverfahren. In: Kreitlow H, Jüptner W (eds) Proc Frühjahrsschule 78
Holografische Interferometrie in Technik und Medizin

99. Jüptner W, Kreis T, Kreitlow H (1983) Automatic evaluation of holographic interferograms
by reference beam phase shifting. Proc SPIE 398:22–29

100. Jüptner W, Pomarico J, Schnars U (1996) Light-in-Flight measurements by Digital
Holography. In: Proc. SPIE vol 2860, pp. 22–29

101. Jüptner W (2002) Digital Holography: Techniques and Sensors in Microsystem Engineering.
Proc. SPIE, (Seattle)

102. Jüptner W, Osten W (2002) Coherent shape control using coherent masks. SPIE proceedings,
pp. 338–350.

103. Kato J, Yamaguchi I, Matsumura T (2002) Multicolor digital holography with an achromatic
phase shifter. Opt Lett 27(16):1403–1405

104. Katz J (1999) Submersible holocamera for detection of particle characteristics and motions in
the sea. Deep Sea Res. Instrum. Methods 46:1455–1481

105. Kebbel V, Grubert B, Hartmann HJ, Jüptner W, Schnars U (1998) Application of digital
holography to space-borne fluid science measurements. In: Proc 49th International
astronautical congress melbourne paper no. IAF-98-J.5.03

106. Kebbel V, Adams M, Hartmann HJ, Jüptner W (1999) Digital holography as a versatile
optical diagnostic method for microgravity experiments. Meas Sci Technol 10:893–899

107. Kebbel V, Hartmann HJ, Jüptner W (2001) Application of digital holographic microscopy for
inspection of micro-optical components. Proc SPIE 4398:189–198

108. Kemper B, von Langehanenberg P, Bally G (2007) Digital Holographic Microscopy. Optik
& Photonik 2:41–44

109. Kilpatrick JM, Watson J (1993) Underwater hologrammetry: reduction of aberrations by
index compensation. J Phys D: App Phys 26:177–182

110. Kilpatrick JM, Watson J (1994) Precision replay of underwater holograms. Meas Sci Technol
5:716–725

111. Kim MK (1999) Wavelength-scanning digital interference holography for optical section
imaging. Optics Letters 24(23):1693–1695

112. Kim MK (2000) Tomographic three-dimensional imaging of a biological specimen using
wavelength-scanning digital interference holography. (2000). Optics Express 7(9):305–310

113. Kim S, Lee B, Kim E (1997) Removal of bias and the conjugate image in incoherent on-axis
triangular holography and real-time reconstruction of the complex hologram. Appl Opt 36
(20):4784–4791

114. Kim MK (2010) Applications of Digital Holography in Biomedical Microscopy. Journal of
the Optical Society of Korea 14(2):77–89

115. King RA (1989) The use of self-entropy as a focus measure in digital holography. Pattern
Recognition Letters 9:19–25

116. Klein MV, Furtak TE (1986) Optics, 2nd edn. Wiley, New York
117. Knox C (1966) Holographic microscopy as a technique for recording dynamic microscopic

subjects. Science 153:989–990
118. Knox C, Brooks RE (1969) Holographic motion picture microscopy. Proc Roy Soc B

174:115–121
119. Kolenovic E, Lai S, Osten W, Jüptner W (2001) Endoscopic shape and deformation

measurement by means of Digital Holography. In: Jüptner W, Osten W (eds) Proc 4th
International Workshop on Automatic Processing of Fringe Patterns. Akademie, Berlin,
pp 686–691

120. Kolenovic E (2005) Correlation between intensity and phase in monochromatic light. J. Opt.
Soc. Am. A 22:899–906

121. Kreis T (1996) Holographic Interferometry. Akademie, Berlin
122. Kreis T (2002) Frequency analysis of digital holography. Opt Eng 41(4):771–778

References 215



123. Kreis T (2002) Frequency analysis of digital holography with reconstruction by convolution.
Opt Eng 41(8):1829–1839

124. Kreis T, Jüptner W (1997) Principles of digital holography. In: Jüptner W, Osten W (eds)
Proc 3rd International Workshop on Automatic Processing of Fringe Patterns. Akademie,
Berlin, pp 353–363

125. Kreis T, Jüptner W (1997) Suppression of the dc term in digital holography. Opt Eng 36
(8):2357–2360

126. Kreis T, Jüptner W, Geldmacher J (1998) Digital Holography: Methods and Applications.
Proc SPIE 3407:169–177

127. Kreis T, Adams M, Jüptner W (1999) Digital in-line holography in particle measurement. In:
Proc SPIE vol 3744, 54–. 64

128. Kreis T, Aswendt P, Höfling R (2001) Hologram reconstruction using a digital micromirror
device. Opt Eng 40(6):926–933

129. Kreis T, Adams M, Jüptner W (2002) Aperture synthesis in digital holography. Proc SPIE
4777:69–76

130. Kreis T (2005) Handbook of holographic interferometry. Wiley VCH, Weinheim
131. Kreuzer HJ, Pawlitzek RA (1997) Numerical Reconstruction for in-line Holography in

Reflection and under glancing Incidence. In: Jüptner W, Osten W (eds) Proc 3rd International
Workshop on Automatic Processing of Fringe Patterns. Akademie, Berlin, pp 364–367

132. Kronrod MA, Merzlyakov NS, Yaroslavski LP (1972) Reconstruction of holograms with a
computer. Sov Phys-Tech Phys USA 17(2):333–334

133. Kujawinska M, Kozacki T, Falldorf C, Meeser T, Henelly BM, Garbat P, Zaperty W,
Niemela M, Finke G, Kowiel M, Naughton T (2014) Multiwavefront digital holographic
television. Optics Express 22(3):2324–2336

134. Kulak M, Pisarek J (2001) Speckle photography in the examination of composites. In: W
Jüptner , W Osten (eds) Proc 4th International workshop on automatic processing of fringe
patterns. Elsevier, pp 528–530

135. Lai S, Neifeld M (2000) Digital wavefront reconstruction and its application to image
encryption. Opt Commun 178:283–289

136. Lai S, Kemper B, von Bally G (1999) Off-axis reconstruction of in-line holograms for twin-
image elimination. Optics Communications 169:37–43

137. Lai S, King B, Neifeld MA (2000) Wave front reconstruction by means of phase-shifting
digital in-line holography. Optics Communications 173:155–160

138. Lai S, Kolenovic E, Osten W, Jüptner W (2002) A deformation and 3D-shape measurement
system based on phase-shifting digital holography. Proc SPIE 4537:273–276

139. Latta JN (1971) Comupter-based analysis of holography using ray tracing. App Opt
10:2698–2710

140. Lee WH (1978) Computer-generated Holograms: Techniques and Applications. Progress in
Optics 16:120–232

141. Leith EN, Upatnieks J (1962) Reconstructed wavefronts and communication theory. J Opt
Soc Am 52:1123–1130

142. Leith EN, Upatnieks J (1964) Wavefront reconstruction with diffused illumination and
threedimensional objects. J Opt Soc Am 54:1295–1301

143. Levi A, Stark H (1984) Image restoration by the method of generalized projections with
application to restoration from magnitude. J. Opt. Soc. Am. A 1:932–943

144. Liebling M, Unser M (2004) Autofocus for digital Fresnel holograms by use of a Fresnelet-
sparsity criterion. J Opt Soc Am A 21:2424–2430

145. Li W, Loomis NC, Hu Q, Davis CS (2007) Focus detection from digital in-line holograms
based on spectral l-1 norms. Journal of the Optical Society of America A 24:3054–3062

146. Liu G, Scott PD (1987) Phase retrieval and twin-image elimination for in-line Fresnel
holograms. J Opt Soc Am A 4(1):159–165

147. Lokberg O (1980) Electron Speckle Pattern Interferometry. Phys Technol 11:16–22

216 References



148. Lokberg O, Slettemoen GA (1987) Basic Electronic Speckle Pattern Interferometry. Appl
Opt Eng 10:455–505

149. Luke D (2005) Relaxed averaged alternating reflections for diffraction imaging. Inverse
Problems 21:37–50

150. Macovski A, Ramsey D, Schaefer LF (1971) Time Lapse Interferometry and Contouring
using Television Systems. Appl. Opt. 10(12):2722–2727

151. Maiman T (1960) Stimulated optical radiation in ruby. Nature 187:493
152. Malkiel E, Abras JN, Katz J (2003) Automated scanning and measurements of particle

distribution within a holographic reconstructed volume. Meas Sci Technol 15:601–612
153. Malkiel E (2003) The three-dimensional flow field generated by a feeding calnoid copepod

measured using digital holography. J Exp Biol 206:3657–3666
154. Matoba O, Naughton TJ, Frauel Y, Bertaux N, Javidi B (2002) Real-time three-dimensional

object reconstruction by use of a phase-encoded digital hologram. Appl Opt 41
(29):6187–6192

155. Meier RW (1965) Magnification and third-order theory in holography. J Op Soc Am
55:987–992

156. Meng H, Hussain F (1995) In-line recording and off-axis viewing technique for holographic
particle velocimetry. App Opt 34:1827–1840

157. Meng, G. Pan, Y. Pu, SH. Woodward (2004) Holographic particle image velocimetry: from
film to digital recording. Meas Sci Technol 15: 673–685

158. Misell DL (1973) A method for the solution of the phase problem in electron Microscopy.
J. Phys. D Appl. Phys. 6: L6–L9

159. Nadeborn W, Andrä P, Osten W (1995) A robust procedure for absolute phase measurement.
Opt Lasers Eng 22: 245–260

160. Neal DR, Alford W, Gruetzner JK (1996) Amplitude and phase beam characterization using
a two-dimensional wavefront sensor. Proc. SPIE 2870:72–82

161. Neumann DB (1980) Comparative holography. In: Tech digest topical meeting on hologram
interferometry and speckle metrology, paper MB2-1. Opt Soc Am, 1764–1766

162. Nilsson B, Carlsson T (1998) Direct three-dimensional shape measurement by digital light-
in-flight holography. Appl Opt 37(34):7954–7959

163. Nilsson B, Carlsson T (1999) Digital light-in-flight holography for simultaneous shape and
deformation measurement. In: Proc. SPIE 3835: 127–134

164. Nilsson B, Carlsson T (2000) Simultaneous measurement of shape and deformation using
digital light-in-flight recording by holography. Opt Eng 39(1):244–253

165. Nimmo Smith W (2008) A submersible three-dimensional particle tracking velocimetry
system for flow visualization in the coastal ocean. Limnology & Oceanography: Methods
6:96–104

166. Onural L (2000) Sampling of the diffraction field. Appl Opt 39(32):5929–5935
167. Onural L, Özgen MT (1992) Extraction of three-dimensional object-location information

directly from in-line holograms using Wigner analysis. J Opt Soc Am A 9(2):252–260
168. Onural L, Scott PD (1987) Digital decoding of in-line holograms. Opt Eng 26

(11):1124–1132
169. Osten W, Nadeborn W, Andrä P (1996) General hierarchical approach in absolute phase

measurement, In: Proc SPIE. vol 2860, 2–13
170. Osten W, Kalms M, Jüptner, Tober G, Bisle W, Scherling D (2000) Shearography system for

the testing of large scale aircraft components taking into account noncooperative surfaces, In:
Proc SPIE. vol 4101B. 432–8

171. Osten W, Seebacher S, Jüptner W (2001) Application of digital holography for the inspection
of microcomponents. Proc SPIE 4400:1–15

172. Osten W, Seebacher S, Baumbach T, Jüptner W (2001) Absolute shape control of
microcomponents using digital holography and multiwavelength contouring. Proc SPIE
4275:71–84

References 217



173. Osten W, Baumbach T, Seebacher S, Jüptner W (2001) Remote shape control by
comparative digital holography. In: Jüptner W, Osten W (eds) Proc 4th International
Workshop on Automatic Processing of Fringe Patterns. Akademie, Berlin, pp 373–382

174. Osten W, Baumbach T, Jüptner W (2002) Comparative digital holography. Opt Lett 27
(20):1764–1766

175. Ostrovsky YI, Butosov MM, Ostrovskaja GV (1980) Interferometry by Holography.
Springer, New York

176. Owen RB, Zozulya A (2000) In-line digital holographic sensor for monitoring and
characterizing marine particulates. Opt Eng 39(8):2187–2197

177. Owen RB, Zozulya A, Benoit MR, Klaus DM (2002) Microgravity materials and life
sciences research applications of digital holography. Appl Opt 41(19):3927–3935

178. Pan G, Meng H (2003) Digital holography of particle fields: reconstruction by use of
complex amplitudes. App Optics 42:827–833

179. Pedrini G, Tiziani H (2002) Short-coherence digital microscopy by use of a holographic
imaging system. Appl Opt 41(22):4489–4496

180. Pedrini G, Zou YL, Tiziani H (1995) Digital double-pulsed holographic interferometry for
vibration analysis. J Mod Opt 42(2):367–374

181. Pedrini G, Zou Y, Tiziani H (1997) Simultaneous quantitative evaluation of in-plane and out-
of-plane deformations by use of a multidirectional spatial carrier. Appl Opt 36(4):786

182. Pedrini G, Schedin S, Tiziani H (1999) Lensless digital holographic interferometry for the
measurement of large objects. Optics Communications 171:29–36

183. Pedrini G, Schedin S, Tiziani H (2000) Spatial filtering in digital holographic microscopy.
J Mod Opt 47(8):1447–1454

184. Pedrini G, Titiani HJ, Alexeenko I (2002) Digital-holographic interferometry with an image-
intensifier system. Appl Opt 41(4):648

185. Pedrini G, Osten W, Zhang Y (2005) Wave-front reconstruction from a sequence of
interferograms recorded at different planes. Opt. Lett. 30:833–835

186. Pech-Pacheco JL, Cristóbal G, Chamorro-Martínez J, Fernández-Valdivia J. (2000) Diatom
autofocusing in brightfield microscopy: a comparative study. proceedings of the IEEE
international conference on pattern recognition (ICPR’00). 3: 3318–3321

187. Pettersson S-G, Bergstrom H, Abramson N (1989) Light-in-flight recording 6: Experiment
with view-time expansion using a skew reference wave. Appl Opt 28:766–770

188. Platt BC, Shack R (2001) History and Principles of Shack-Hartmann Wavefront Sensing.
Journal of Refractive Surgery 17:573–577

189. Pomarico J, Schnars U, Hartmann HJ, Jüptner W (1996) Digital recording and numerical
reconstruction of holograms: A new method for displaying Light-in-flight. A Opt 34
(35):8095–8099

190. Powell RL, Stetson KA (1965) Interferometric Vibration Analysis by Wavefront
reconstructions. J Opt Soc Amer 55:1593–1598

191. Raupach S, Vössing HJ, Curtius J, Borrmann S (2006) Digital crossed-beam holography for
in situ imaging of atmospheric ice particles. J. Opt. A: Pure Appl. Opt. 8(9):796

192. Rodenburg JM, Hurst AC, Cullis AG, Dobson BR, Pfeiffer F, Bunk O, David C, Jefimovs K,
Johnson I (2007) Hard-X-Ray Lensless Imaging of Extended Objects. Phys. Rev. 98:034801

193. Rolleston R, George N (1986) Image reconstruction from partial Fresnel zone information.
Appl. Opt. 25:178–183

194. Santos A, Oritz C, De Soloranzo J, Vaquero J.J., Pena JM,, Malpica N, Del Pozo F et al
(1997) Evaluation of autofocus functions in molecular cytogenetic analysis. J Microsc 188
(3): 264–272

195. Schnars U (1994) Direct phase determination in hologram interferometry with use of digitally
recorded holograms. J Opt Soc Am A 11(7):2011–2015, reprinted (1997) In: K Hinsch, R
Sirohi (eds). SPIE Milestone Series MS 144, pp 661–665

218 References



196. Schnars U (1994) Digitale Aufzeichnung and mathematische Rekonstruktion von
Hologrammen in der Interferometrie. VDI-Fortschritt-Berichte series 8 no 378 VDI,
Düsseldorf

197. Schnars U, Jüptner W (1993) Principles of direct holography for interferometry. In: Jüptner
W, Osten W (eds) FRINGE 93 Proc. 2nd International workshop on automatic processing of
fringe patterns. Akademie, Berlin, pp 115–120

198. Schnars U, Jüptner W (1994) Direct recording of holograms by a CCD-target and numerical
reconstruction. Appl Opt 33(2):179–181

199. Schnars U, Jüptner W (1994) Digital reconstruction of holograms in hologram interferometry
and shearography. Appl Optics 33(20):4373-4377, reprinted (1997) In: K Hinsch , R Sirohi
(eds). SPIE Milestone Series MS 144, pp 656–660

200. Schnars U, Jüptner W (1995) Digitale Holografie. In: annual conference of the Deutsche
Gesellschaft für angewandte Optik. Handout, Binz.

201. Schnars U, Geldmacher J, Hartmann HJ, Jüptner W (1995) Mit digitaler Holografie den
Stoßwellen auf der Spur. F&M 103(6):338–341

202. Schnars U, Hartmann HJ, Jüptner W (1995) Digital recording and numerical reconstruction
of holograms for nondestructive testing. Proc SPIE 2545:250–253

203. Schnars U, Kreis T, Jüptner W (1996) Digital recording and numerical reconstruction of
holograms: Reduction of the spatial frequency spectrum. Opt Eng 35(4):977–982

204. Schreier D (1984) Synthetische Holografie. VCH, Weinheim
205. Schwomma O (1972) austrian patent 298,830
206. Seebacher S (2001) Anwendung der digitalen Holografie bei der 3D-Form- und

Verformungsmessung an Komponenten der Mikrosystemtechnik. University Bremen
publishing house, Bremen

207. Seebacher S, Osten W, Jüptner W (1998) Measuring shape and deformation of small objects
using digital holography. Proc SPIE 3479:104–115

208. Seebacher S, Baumbach T, Osten W, Jüptner W (2000) Combined 3D-shape and
deformation analysis of small objects using coherent optical techniques on the basis of
digital holography. Proc SPIE 4101B:520–531

209. Seifert L, Tiziani HJ, Osten W (2005) Wavefront reconstruction with the adaptive Shack-
Hartmann sensor. Opt. Comm. 245:255–269

210. Sequoia LISSTHOLO. http://www.sequoiasci.com/products/LISSTHOLOspecs.cmsx.
211. Servin M, Malacara D, Marroquin JL (1996) Wave-front recovery from two orthogonal

sheared interferograms. Appl. Opt. 35:4343–4348
212. Shack RV, Platt BC (1971) Production and use of a lenticular Hartmann screen (abstract).

J. Opt. Soc. Am. 61:656
213. Sheng J, Malkiel E, Katz J (2008) Using digital holographic microscopy for simultaneous

measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer.
Exp Fluids 45:1023–1035

214. Sheng J, Malkiel E, Katz J (2006) Digital holographic microscope for measuring three-
dimensional particle distributions and motions. App Opt 4:3893–3901

215. Sjoedahl M, Benckert LR (1993) Electronic speckle photography: analysis of an algorithm
giving the displacement with subpixel accuracy. Appl Opt 32(13):2278–2284

216. Skarman B, Becker J, Wozniak K (1996) Simultaneous 3D-PIV and temperature
measurements using a new CCD-based holographic interferometer. Flow Meas Instrum 7
(1):1–6

217. Snyman J (2005) Practical Mathematical Optimization: An Introduction to Basic
Optimization Theory Class New Gradient-Based Algorithms. Springer US, 1 ed.

218. Sollid JE (1969) Holographic interferometry applied to measurements of small static
displacements of diffusely reflecting surfaces. Appl Opt 8:1587–1595

219. Steinbichler H (2004) Shearography – NDT. Product information, Steinbichler, Neubeuern
220. Steinchen W, Yang L (2003) Digital Shearography. SPIE press.
221. Stern A, Javadi B (2006) J Opt Soc Amer A: Opt Image Sci 24:163–168

References 219

http://www.sequoiasci.com/products/LISSTHOLOspecs.cmsx


222. Stetson KA, Powell RL (1965) Interferometric hologram evaluation and real-time vibration
analysis of diffuse objects. J Opt Soc Amer 55:1694–1695

223. Stetson KA, Brohinsky R (1985) Electrooptic holography and its application to hologram
interferometry. Appl Opt 24(21):3631–3637

224. Stetson KA, Brohinsky R (1987) Electrooptic holography system for vibration analysis and
nondestructive testing. Opt Eng 26(12):1234–1239

225. Streibl N (1984) Phase imaging by the transport equation of intensity. Opt. Comm. 49:6–10
226. Sun H, Song B, Dong H, Reid B, Player MA, Watson J, Zhao M (2008) Visualization of fast-

moving cells in vivo using digital holographic microscopy. Jnl Biomedical Optics 13:014007
227. Sun HY, Hendry DC, Player MA, Watson J (2007) In situ electronic holographic camera for

studies of plankton. IEEE J Ocean Eng 32:373–382
228. Sun H, Perkins RG, Watson J, Player MA, Paterson DM (2004) Observations of coastal

sediment erosion using in-line holography. J Opt Sci A: Pure and App Optics 6:703–710
229. Sun H, Benzie PW, Burns N, Hendry DC, Player MA, Watson J (2008) Underwater digital

holography for studies of marine plankton. Phil Trans Roy Soc 366:1789–1806
230. Synnergren P, Sjödahl M (2000) Mechanical testing using digital speckle photography. Proc

SPIE vol 4101B, 520–531
231. Tajahuerce E, Javidi B (2000) Encrypting three-dimensional information with digital

holography. Appl Opt 39(35):6595–6601
232. Tajahuerce E, Matoba O, Verral S, Javidi B (2000) Optoelectronic information encryption

with phase-shifting interferometry. Appl Opt 39(14):2313–2320
233. Tajahuerce E, Matoba O, Javidi B (2001) Shift-invariant three-dimensional object

recognition by means of digital holography. Appl Opt 40(23):3877–3886
234. Takajo H, Takahashi T, Ueda R, Taninaka M (1998) Study on the convergence property of

the hybrid input output algorithm used for phase retrieval. J. Opt. Soc. Am. A 15:2849–2861
235. Takaki Y, Ohzu H (1999) Fast numerical reconstruction technique for high-resolution hybrid

holographic microscopy. Appl Opt 38(11):2204–2211
236. Takaki Y, Ohzu H (2000) Hybrid holographic microscopy: visualization of three-

dimensional object information by use of viewing angles. Appl Opt 39(29):5302–5308
237. Takaki Y, Kawai H, Ohzu H (1999) Hybrid holographic microscopy free of conjugate and

zero-order images. Appl Opt 38(23):4990–4996
238. Teague M (1983) Deterministic phase retrieval: a Green's function solution. J. Opt. Soc. Am.

A 73:1434–1441
239. Thompson BJ, Ward JH (1966) Particle sizing – the first direct use of holography. Sci Res

1:37–40
240. Thompson BJ (1978) Applications of Holography. Rep. Prog. Phys 41:633–674
241. Trolinger JD (1991) Particle and Flow Field Holography Combustion Measurements. Chigier

N (ed). Hemisphere Publishing Corporation, pp 51-89
242. Trolinger J (1975) Particle Field Holography. Optical Engineering 14:383–392
243. Verrier N, Atlan M (2011) Off-axis digital hologram reconstruction: some practical

considerations. Appl Opt 50(34):136
244. Vikram CS (1992) Particle field holography, Cambridge
245. Wagner C, Seebacher S, Osten W, Jüptner W (1999) Digital recording and numerical

reconstruction of lensless Fourier holograms in optical metrology. Appl Opt 38
(22):4812–4820

246. Wagner C, Osten W, Seebacher S (2000) Direct shape measurement by digital wavefront
reconstruction and multiwavelength contouring. Opt Eng 39(1):79–85

247. Waller L, Tian L, Barbastathis G (2010) Transport of Intensity phase-amplitude imaging with
higher order intensity derivatives. Opt. Exp. 18:12552–12561

248. Watson J, Alexander S, Craig G, Hendry DC, Hobson PR, Lampitt RS, Marteau JM, Nareid
H, Player MA, Saw K, Tipping K (2001) Simultaneous in-line and off-axis subsea
holographic recording of plankton and other marine particles. Meas Sci Technol 12:L9–L15

220 References



249. Watson J, Burns N (2013) Submersible holography and subsea holocameras, in Subsea
Optics and Imaging, J Watson, Z Zielinski (eds), 12: 294–326

250. Winnacker A (1984) Physik von Laser und Maser. BI-Verlag, Mannheim
251. Wozniak K, Skarman B (1994) Digital holography in flow visualization. final report for ESA/

ESTEC purchase order 142722, Noordwijk
252. Xiao X, Puri I (2002) Digital recording and numerical reconstruction of holograms: an

optical diagnostic for combustion. Appl Opt 41(19):3890–3898
253. Xu L, Peng X, Asundi A, Miao J (2001) Hybrid holographic microscope for interferometric

measurement of microstructures. Opt Eng 40(11):2533–2539
254. Yamaguchi I, Saito H (1969) Application of holographic interferometry to the measurement

of poisson´s ratio. Jap Journal of Appl Phys 8:768–771
255. Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Optics Letters 22

(16):1268–1270
256. Yamaguchi I, Kato J, Ohta S, Mizuno J (2001) Image formation in phase-shifting digital

holography and applications to microscopy. Appl Opt 40(34):6177–6186
257. Yamaguchi I, Inomoto O, Kato J (2001) Surface shape measurement by phase shifting digital

holography. In: Jüptner W, Osten W (eds) Proc 4th International Workshop on Automatic
Processing of Fringe Patterns. Akademie, Berlin, pp 365–372

258. Yamaguchi I, Matsumura T, Kato J (2002) Phase-shifting color digital holography. Opt Lett
27(13):1108–1110

259. Yang S, Xie X, Thuo Y, Jia C (1999) Reconstruction of near-field in-line holograms. Optics
Communications 159:29–31

260. Yang G, Dong B, Gu B, Zhuang J, Ersoy OK (1994) Gerchberg-Saxton and Yang-Gu
algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl. Opt.
33:209–218

261. Yaroslavskii LP, Merzlyakov NS (1980) Methods of digital holography. Consultants Bureau,
New York

262. Youla DC, Webb H (1982) Image restoration by the method of convex projections: Part 1 –

Theory. IEEE Trans. Med. Imaging MI-1: 81–94.
263. Yu L, Cai L (2001) Iterative algorithm with a constraint condition for numerical

reconstruction of a three-dimensional object from its hologram. J Opt Soc Am A 18
(5):1033–1045

264. Zhang T, Yamaguchi I (1998) Three-dimensional microscopy with phase-shifting digital
holography. Optics Letters 23(15):1221–1223

265. Zhang T, Yamaguchi I (1998) 3D microscopy with phase-shifting digital holography. Proc
SPIE 3479:152–159

266. Agour M, Huke P, v. Kopylow C, Falldorf C (2010) Shape measurement by means of phase
retrieval using a spatial light modulator. In: AIP Conf. Proc. 1236:265–270

267. Agour M (2012) Determination of the complex amplitude of monochromatic light from a set
of intensity observations. Strahltechnik 47, BIAS Verlag Bremen

268. Lord Rayleigh, Wood R W (1898) Phase reversal zone plates and diffraction telescope. Phil.
Mag. Series 5, vol. 45: 511. Reprinted in Lord Rayleigh Scientific Papers. pp. 74–79
(1887–1892)

269. Sutkowski M, Kujawinska M (2000) Application of liquid crystal (LC) devices for
optoelectronic reconstruction of digitally stored holograms. Optics and Lasers in Engineering
33(3):191–201

References 221



Index

Symbol
4f-setup, 147

A
Aberrations, 104, 196
Aircraft industry, 70
Amplitude, 6, 21, 22
Amplitude transmission, 22
Amplitude transmittance, 22
Angular frequency, 6
Angular spectrum method, 49
Aperture, 48, 185
Aperture size, 137, 138
Ar-Ion laser, 121
Astigmatism, 116
Autocorrelation function, 15, 123
Autofocusing, 118

C
Charged coupled device (CCD), 39, 58
Circle of confusion, 138
CMOS, 39, 58, 99
Coherence, 2, 10, 66
Coherence distance, 14, 15
Coherence length, 12, 66, 121, 123
Coma, 116
Comparative digital holography, 4, 131, 132
Comparative interferometry, 132
Complex amplitude, 8, 17, 21, 41, 57
Complex degree of coherence, 15
Computational shear interferometry, 142, 177,

180
Computational wave field sensing, 141
Computational wave front sensing, 2
Computer generated holography, 2
Conjugate image, 98
Conjugate object wave, 23

Conjugate reference, 41
Constructive interference, 9
Contouring, 30
Contrast, 19, 63, 66
Convolution approach, 49, 51
Convolution theorem, 50
Correction factor, 42, 51
CoSI, 177
Cross correlation, 15
Cross correlation function, 193

D
DC term, 54, 65
Decorrelation, 132
Demodulation, 37, 38
Depth of focus, 1, 21, 102, 160
Depth-of-field, 96, 102
Destructive interference, 9
Deterministic methods, 156
Diffraction, 5, 15
Diffraction efficiency, 131
Diffuser, 94
Digital Fourier holography, 52
Digital hologram, 46, 132
Digital holographic interferometry, 41,

69, 194
Digital holographic microscopy, 4, 106, 107
Digital holography, 2, 69, 124, 127
Digital mirror device, 130
Digital speckle pattern interferometry, 185
Digital speckle photography, 193
Diode laser, 12
Displacement vector, 28, 29, 70, 188
Displacement vector field, 74
Double-exposure holography, 26
Dye laser, 121
Dynamic evaluation, 84
Dynamic range, 63

© Springer-Verlag Berlin Heidelberg 2015
U. Schnars et al., Digital Holography and Wavefront Sensing,
DOI 10.1007/978-3-662-44693-5

223



E
Eddy current, 82
Electrical field, 6
Electromagnetic wave, 5
Electronic speckle pattern interferometry, 3,

185, 194
Electro-optic holography, 189
Encrypting of information, 4
Endoscopic digital holography, 127
Error reduction method, 150

F
Fizeau interferometer, 176
Flaws, 83
Focal distance, 41
Fourier hologram, 2
Fourier transform, 50, 53
Fourier holography, 00000
Fourier transform method, 36
Fourier transformation, 44
Fractional Fourier transform, 147
Frame grabber, 127
Frame-transfer architecture, 61
Fraunhofer far-field distance, 98
Fraunhofer model, 96
Frequency, 6
Fresnel approximation, 42
Fresnel hologram, 2, 97
Fresnel lens, 1
Fresnel transform, 49, 70
Fresnel transformation, 43
Fresnel-Kirchhoff integral, 16, 17, 39, 49, 57
Fringe, 9
Full-frame architecture, 61

G
Gerchberg-Saxton approach, 144
Gerchberg-Saxton scheme, 146
Glass fibres, 127
Gradient search methods, 154, 170
Grating, 126

H
Helmholtz-equation, 142, 179
Heterodyne, 36
Hierarchical phase unwrapping, 90
Hilbert space, 145
Holocameras, 96, 115
Hologram, 21, 39
Holographic interferogram, 27, 69, 130, 187
Holographic interferometry, 2, 25, 35, 194

Holographic microscopy, 95
Holographic particle image velocimetry, 99
Holography, 1, 20, 46
Holovideos, 105, 117
Huygens’ principle, 16, 17
Hybrid input output method, 150, 152

I
Illumination direction, 74
Image plane, 113
Image plane holograms, 196
Imaging equations, 23
Impact loading, 70
Impulse response function, 50
Inclination factor, 17
Incoherent light, 13
Information encryption, 135
In-line, 96, 97
In-line holography, 2
In-plane, 187, 193
Intensity, 7, 19, 22, 43
Interference, 1, 8
Interference pattern, 1
Interference phase, 27, 30, 37, 69, 70, 83, 188,

196, 197
Interferogram, 69
Interferometer, 122
Interline-transfer architecture, 60
Inverse problem, 141
Inversion, 58

L
Laplace operator, 5
Laser, 12, 20, 121
Laser diode, 128
Lateral magnification, 25
LCD, 173, 175- 177
LED, 114, 149, 160, 182
Lens array, 183
Lens transmission factor, 51
Light emitting diode, 68
Light source, 66
Light-in-flight holography, 4, 122
Linear polarized light, 6
Liquid crystal spatial light modulator, 147, 175
Longitudinal magnification, 25

M
Mach-Zehnder interferometer, 92, 113
Magnetic field, 5
Magnification, 25, 51, 108

224 Index



Maxwell equations, 5, 7
Michelson interferometer, 11, 126, 191
Monochromatic, 8, 12
Multiwavelength contouring, 87

N
Natural extension, 167
Non-destructive testing, 81
Numerical focussing, 196
Numerical hologram reconstruction, 2
Numerical reconstruction, 42, 124
Numerical refocusing, 114

O
Object wave, 1, 23
Objective function, 143, 173, 179
Objective speckle pattern, 19
Observation direction, 74, 86
Off-axis, 46
Optical fibres, 85
Optical path difference, 66, 121
Optical Reconstruction, 129
Orthoscopic image, 25
Out-of plane, 187
Out-of-plane deformation, 30

P
Partially coherent light, 13
Particle image velocimetry, 106, 114
Particle measurement, 2
Particle sizing, 96
Particle tracking, 4
Penetrant testing, 82
Perspective, 1, 21
Phase, 7, 21, 22
Phase aberrations, 42
Phase object, 34
Phase retrieval, 142, 148
Phase shift, 113, 128
Phase shift angle, 118
Phase shifting, 188, 196
Phase shifting digital holography, 4, 56
Phase shifting holographic interferometry, 35
Phase shifting interferometry, 180- 182
Phase singularities, 164
Phase unwrapping, 37, 70
Photo effect, 59
Photographic emulsions, 62, 63
Photographic plates, 20, 196
Photons, 5
Photorefractive crystals, 195

Phytoplankton, 116
Piezoelectric transducer, 56, 113
Piezoelectric translator, 36
Pinhole camera effect, 138
Pixel distance, 47
Plane reference wave, 41
Plane wave, 6
Plane wave decomposition, 149
Plankton, 118
Poisson noise, 169
Poisson ratio, 74
Printer, 131
Propagation operator, 143
Pseudoscopic, 99
Pseudoscopic image, 25
Ptychography, 162

R
Real image, 23, 39, 130
Real time technique, 27
Reconstruction, 39
Reference wave, 1, 21, 39, 124
Refractive index, 34, 92
Resolution, 49, 51, 62, 196
Rigid body motions, 81, 191
Ruby laser, 73

S
Sensitivity, 63
Sensitivity vector, 30, 74
Shack-Hartmann, 4, 183, 184
Shape Measurement, 85
Shear interferometry, 4, 162
Shear-interferometer, 175
Shearogram, 190
Shearography, 3, 82, 189
Shutter, 60
Skeletonizing, 36
Spatial coherence, 13, 114
Spatial frequency, 10, 20, 62, 65, 72
Spatial light modulator, 129
Speckle, 18, 185
Speckle decorrelation, 88
Speckle interferogram, 186, 190
Speckle interferometry, 177
Speckle pattern, 193
Speckle photography, 3
Speckle size, 19, 47, 185, 187
Spectral width, 12
Speed of light, 5, 125
Spherical aberration, 116
Spherical reference wave, 53

Index 225



Stability, 66
Steepest descent gradient method, 154, 171
Strains, 193
Subjective speckle pattern, 20
Submersible, 115
Subpixel evaluation, 194
Summed distance error, 146
Superluminescent diode, 67
Superposition, 8
Suppression, 53
Synthetic apertures, 137
Synthetic wavelength, 32, 87, 90

T
Telecentric imaging system, 34
Temporal coherence, 11
Temporal phase unwrapping, 128
Thermal expansion coefficient, 74, 78
Thermoplastic films, 195
Tilted reference wave, 56
Tomography, 110, 126
Torsions, 75
Transient deformations, 72
Transparent media, 92
Transport-of-intensity equation, 156
TV-holography, 185
Twin image, 2, 93
Two-illumination-point method, 30, 85
Two-wavelength contouring, 134
Two-wavelength method, 30, 86

U
Ultrasonic testing, 82
Underwater, 115
Unwrapped phase, 73

V
Vacuum chamber, 78
Vacuum permittivity, 7
Van Cittert-Zernike theorem, 173
Vibration isolation, 189, 193
Vibrations, 66, 128
Virtual image, 21, 23, 39, 55, 130
Virtual lens, 42
Visibility, 12

W
Wave equation, 5
Wave field reconstruction, 178
Wave front reconstruction, 164, 178
Wave number, 6
Wave vector, 6
Wavefield sensing, 4
Wavefront, 9, 16, 122, 125
Wavelength, 6

X
X-ray, 82

Y
Young interferometer, 13, 15
Young’s interferometer, 14
Young’s modulus, 74, 76

Z
Zero order, 46, 54, 128
Zero padding, 63

226 Index


	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Introduction
	2 Fundamental Principles of Holography
	2.1 Light Waves
	2.2 Interference
	2.3 
	2.3.1 General
	2.3.2 
	2.3.3 Spatial Coherence

	2.4 
	2.5 Speckle
	2.6 
	2.6.1 Hologram Recording and Reconstruction
	2.6.2 The 

	2.7 
	2.7.1 Generation of Holographic Interferograms
	2.7.2 Displacement Measurement by HI
	2.7.3 Holographic 
	2.7.4 Measurement by HI
	2.7.5 Phase Shifting HI
	2.7.6 


	3 Digital Holography
	3.1 General Principles
	3.2 
	3.2.1 Reconstruction by the 
	3.2.2 Reconstruction by the 
	3.2.3 

	3.3 Shift and Suppression of DC-Term and Conjugate Image
	3.3.1 of the DC Term
	3.3.2 Tilted Reference Wave
	3.3.3 

	3.4 Recording of Digital Holograms
	3.4.1 Image Sensors
	3.4.2 Spatial Frequency Requirements
	3.4.3 Cameras for Digital Hologram Recording
	3.4.4 Recording Set-ups
	3.4.5 Stability Requirements
	3.4.6 Light Sources


	4 Digital Holographic Interferometry (DHI)
	4.1 General Principles
	4.2 Deformation Measurement
	4.2.1 Quantitative Displacement Measurement
	4.2.2 Mechanical Materials Properties
	4.2.3 Thermal Materials Properties
	4.2.4 Non-destructive Testing

	4.3 
	4.3.1 Two-Illumination-Point Method
	4.3.2 Two- and Multi-wavelength Method
	4.3.3 Hierarchical Phase Unwrapping

	4.4 Measurement of Refractive Index Variations

	5 Digital Holographic Particle Sizing and Microscopy
	5.1 Introduction
	5.2 Recording and Replay Conditions
	5.2.1 In-line Recording
	5.2.2 Off-axis Recording
	5.2.3 Image Resolution
	5.2.4 Holographic Depth-of-Field and Depth-of-Focus
	5.2.5 Optical 

	5.3 Data Processing and Autofocusing of Holographic Images
	5.4 Some Applications in Imaging and Particle Sizing
	5.4.1 Particle Sizing
	5.4.2 (DHM)
	5.4.3 Holographic Tomography
	5.4.4 Phase Shifting DHM
	5.4.5 Particle Image Velocimetry (PIV)
	5.4.6 Underwater Digital Holography


	6 Special Techniques
	6.1 Applications Using Short Light
	6.1.1 Light-in-Flight Measurements
	6.1.2 Short-Coherence 

	6.2 
	6.3 of Digital Holograms
	6.4 
	6.4.1 Fundamentals of Comparative Holography
	6.4.2 Comparative Digital Holography

	6.5 Encrypting of Information with Digital Holography
	6.6 Synthetic 
	6.7 Holographic Pinhole Camera

	7 Computational Wavefield Sensing
	7.1 Overview
	7.2 Phase Retrieval
	7.2.1 Projection Based Methods
	7.2.2 Gradient Search Methods
	7.2.3 Deterministic Methods

	7.3 Shear Interferometry for Wavefield Sensing
	7.3.1 Wavefront Reconstruction
	7.3.2 Computational Shear Interferometry

	7.4 Shack-Hartmann Wavefront Sensing

	8 Speckle Metrology
	8.1 Electronic Speckle Pattern Interferometry (ESPI)
	8.2 Digital Shearography
	8.3 Digital Speckle Photography
	8.4 Comparison of Conventional HI, ESPI and Digital HI

	Appendix AThe Fourier Transform
	Appendix BPhase Transformation of a Spherical Lens
	Appendix CSimple Reconstruction Routines
	References
	Index



